K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2020

Ta có: B = |x - 2| + |x - 8|

=> B = |x - 2| + | 8 -x| \(\ge\)|x - 2 + 8 - x| = |6| = 6

Dấu "=" xảy ra <=> (x - 2)(8 - x) \(\ge\)

=> 2 \(\le\)\(\le\)8

Vậy MinB = 6 khi \(2\le x\le8\)

13 tháng 5 2016

x=0 biểu thức có gt là 8

13 tháng 5 2016

A=x2+5x+8

A=\(x^2+5x+\frac{25}{4}+\frac{7}{4}\)

\(A=x^2+\frac{5}{2}x+\frac{5}{2}x+\frac{25}{4}+\frac{7}{4}\)

\(A=x\left(x+\frac{5}{2}\right)+\frac{5}{2}\left(x+\frac{5}{2}\right)+\frac{7}{4}\)

\(A=\left(x+\frac{5}{2}\right)\left(x+\frac{5}{2}\right)+\frac{7}{4}=\left(x+\frac{5}{2}\right)^2+\frac{7}{4}\)

\(\left(x+\frac{5}{2}\right)^2\ge0\Rightarrow\left(x+\frac{5}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)

=>GTNN của A là 7/4

Dấu "=" xảy ra <=> \(\left(x+\frac{5}{2}\right)^2=0\Leftrightarrow x=-\frac{5}{2}\)

21 tháng 11 2017

|3x-7|+|3x-2|+8 >= 5+8 = 13 

Dấu "=" xảy ra <=> 3/2 <= x <= 7/3

k mk nha

21 tháng 11 2017

tiếp đi bạn 

a) \(A=2\left|x-3\right|+\left|2x-10\right|=\left|2x-3\right|+\left|10-2x\right|\ge\left|2x-3+10-2x\right|=7\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(2x-3\right)\left(10-2x\right)\ge0\)\(\Leftrightarrow\)\(\frac{3}{2}\le x\le5\)

b) \(B\left|\frac{1}{4}x-8\right|+\left|2-\frac{1}{4}x\right|\ge\left|\frac{1}{4}x-8+2-\frac{1}{4}x\right|=6\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(\frac{1}{4}x-8\right)\left(2-\frac{1}{4}x\right)\ge0\)\(\Leftrightarrow\)\(8\le x\le32\)

3 tháng 10 2019

Vì \(5x=2y=3z\)

\(\Rightarrow5x:30=2y:30=3z:30\)

\(\Rightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)

Lại có: \(x+y-2=220\Rightarrow x+y=222\)

Áp dụng tc của dãy tỉ số bằng nhau ta có: 

\(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=\frac{x+y}{6+15}=\frac{222}{21}=\frac{74}{7}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{74}{7}.6=\frac{444}{7}\\y=\frac{74}{7}.15=\frac{1110}{7}\\z=\frac{74}{7}.10=\frac{740}{7}\end{cases}}\)

Vậy ...

3 tháng 10 2019

Bài 1:

\(5x=2y=3z\)

\(\Rightarrow5x:30=2y:30=3z:30\)

\(\Rightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)

Vì \(x+y-2=220\Rightarrow x+y=222\)

Áp dụng tc của dãy tỉ số bằng nhau ta có: 

\(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=\frac{x+y}{6+15}=\frac{222}{21}=\frac{74}{7}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{74}{7}.6=\frac{444}{7}\\y=\frac{74}{7}.15=\frac{1110}{7}\\z=\frac{74}{7}.10=\frac{740}{7}\end{cases}}\)

23 tháng 10 2023

a) Ta thấy: \(\left|\dfrac{2}{5}-x\right|\ge0\forall x\)

\(\Rightarrow Q=\dfrac{9}{2}+\left|\dfrac{2}{5}-x\right|\ge\dfrac{9}{2}\forall x\)

Dấu \("="\) xảy ra khi: \(\left|\dfrac{2}{5}-x\right|=0\Leftrightarrow\dfrac{2}{5}-x=0\Leftrightarrow x=\dfrac{2}{5}\)

Vậy \(Min_Q=\dfrac{9}{2}\) khi \(x=\dfrac{2}{5}\).

\(---\)

b) Ta thấy: \(\left|x+\dfrac{2}{3}\right|\ge0\forall x\)

\(\Rightarrow M=\left|x+\dfrac{2}{3}\right|-\dfrac{3}{5}\ge-\dfrac{3}{5}\forall x\)

Dấu \("="\) xảy ra khi: \(\left|x+\dfrac{2}{3}\right|=0\Leftrightarrow x+\dfrac{2}{3}=0\Leftrightarrow x=-\dfrac{2}{3}\)

Vậy \(Min_M=-\dfrac{3}{5}\) khi \(x=-\dfrac{2}{3}\).

\(---\)

c) Ta thấy: \(\left|\dfrac{7}{4}-x\right|\ge0\forall x\)

\(\Rightarrow-\left|\dfrac{7}{4}-x\right|\le0\forall x\)

\(\Rightarrow N=-\left|\dfrac{7}{4}-x\right|-8\le-8\forall x\)

Dấu \("="\) xảy ra khi: \(\left|\dfrac{7}{4}-x\right|=0\Leftrightarrow\dfrac{7}{4}-x=0\Leftrightarrow x=\dfrac{7}{4}\)

Vậy \(Max_N=-8\) khi \(x=\dfrac{7}{4}\).

23 tháng 10 2023

a) Ta có: \(\left|\dfrac{2}{5}-x\right|\ge0\forall x\)

\(\Rightarrow Q=\dfrac{9}{2}+\left|\dfrac{2}{5}-x\right|\ge\dfrac{9}{2}\forall x\)

Dấu "=" xảy ra khi:

\(\dfrac{2}{5}-x=0\)

\(\Rightarrow x=\dfrac{2}{5}\)

Vậy: ... 

b) Ta có: \(\left|x+\dfrac{2}{3}\right|\ge0\forall x\)

\(\Rightarrow M=\left|x+\dfrac{2}{3}\right|-\dfrac{3}{5}\ge-\dfrac{3}{5}\)

Dấu "=" xảy ra:

\(x+\dfrac{2}{3}=0\)

\(\Rightarrow x=-\dfrac{2}{3}\)

Vậy: ...

c) Ta có: \(-\left|\dfrac{7}{4}-x\right|\le0\forall x\)

\(\Rightarrow N=-\left|\dfrac{7}{4}-x\right|-8\le-8\)

Dấu "=" xảy ra:

\(\dfrac{7}{4}-x=0\)

\(\Rightarrow x=\dfrac{7}{4}\)

Vậy: ...

9 tháng 2 2017

a) ta thấy A có thể âm, có thể dương nên để A lớn nhất thì 6-x>0 hay x<6

đẻ \(A=\frac{2}{6-x}\)lớn nhất \(\Leftrightarrow\)6-x nhỏ nhất <=> x lớn nhất

Mà x<6 nên x=5

vậy GTLN của A=2 khi x=5

b) B=\(\frac{8-x}{x-3}=\frac{5-\left(x-3\right)}{x-3}=\frac{5}{x-3}-1\)

Nên B nhỏ nhất <=> \(\frac{5}{x-3}\)nhỏ nhất <=> x-3 lớn nhất (?)

đề này cho thiếu dữ kiện

18 tháng 12 2017

1/ Gọi Bmin là GTNN của B

Ta có \(\left|3x-6\right|\ge0\)=> \(2\left|3x-6\right|\ge0\)với mọi \(x\in R\)

=> \(2\left|3x-6\right|-4\ge0\)với mọi \(x\in R\).

=> Bmin = 0.

Vậy GTNN của B = 0.

2/ Gọi Dmin là GTNN của D.

Ta có \(\left|x-2\right|\ge0\)với mọi \(x\in R\)

và \(\left|x-8\right|\ge0\)với mọi \(x\in R\)

=> \(\left|x-2\right|+\left|x-8\right|\ge0\)với mọi \(x\in R\)

=> Dmin = 0.

=> \(\left|x-2\right|+\left|x-8\right|=0\)

=> \(\hept{\begin{cases}\left|x-2\right|=0\\\left|x-8\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x-2=0\\x-8=0\end{cases}}\)=> \(\hept{\begin{cases}x=2\\x=8\end{cases}}\)(Vô lý! Không thể cùng lúc có 2 giá trị x xảy ra)

Vậy không có x thoả mãn đk khi GTNN của D = 3.

30 tháng 12 2018

Để A=|x|+|8-x| nhỏ nhất thì A<=|x+8-x|

A<=8

Vậy A nhỏ nhất khi A=8

30 tháng 12 2018

Để A=|x|+|8-x| nhỏ nhất thì A<=|x+8-x|

A<=8

Vậy A nhỏ nhất khi A=8