Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(x^2+y^2-2x-4y+5=0\)
\(\Leftrightarrow (x^2-2x+1)+(y^2-4y+4)=0\)
\(\Leftrightarrow (x-1)^2+(y-2)^2=0\)
Vì $(x-1)^2; (y-2)^2\geq 0$ với mọi $x,y\in\mathbb{R}$ nên để tổng của chúng bằng $0$ thì $(x-1)^2=(y-2)^2=0$
$\Rightarrow x=1; y=2$
Vậy...........
Bài 2:
Ta có:
\(a(a-b)+b(b-c)+c(c-a)=0\)
\(\Leftrightarrow 2a(a-b)+2b(b-c)+2c(c-a)=0\)
\(\Leftrightarrow (a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ca+a^2)=0\)
\(\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0\)
Lập luận tương tự bài 1, ta suy ra :
\((a-b)^2=(b-c)^2=(c-a)^2=0\Rightarrow a=b=c\)
Khi đó, thay $b=c=a$ ta có:
\(P=a^3+b^3+c^3-3abc+3ab-3c+5\)
\(=3a^3-3a^3+3a^2-3a+5=3a^2-3a+5\)
\(=3(a^2-a+\frac{1}{4})+\frac{17}{4}=3(a-\frac{1}{2})^2+\frac{17}{4}\geq \frac{17}{4}\)
Vậy $P_{\min}=\frac{17}{4}$
Giá trị này đạt được tại $b=c=a=\frac{1}{2}$
\(-\left(2x^2+y^2+2xy-4x-2y-5\right)\\ \\ =-\left(x^2+2x\left(y-1\right)+\left(y^2-2y+1\right)+\left(x^2-2x+1\right)-7\right)\\ =-\left(x^2+2x\left(y-1\right)+\left(y-1\right)^2+\left(x-1\right)^2-7\right)\\ =-\left(\left(x+y-1\right)^2+\left(x-1\right)^2-7\right)\\ =-\left(x+y-1\right)^2-\left(x-1\right)^2-7\)
\(\left(x+y-1\right)^2\ge0\\ \Rightarrow-\left(x+y-1\right)^2\le0\\ \left(x-1\right)^2\ge0\\ \Rightarrow-\left(x+y-1\right)^2-\left(x-1\right)^2\le0\\ \Rightarrow-\left(x+y-1\right)^2-\left(x-1\right)^2-7\le-7\)
Max A = -7 khi x=1 ; y=0
B) TT
x2+2x+1+y2-4y+4+z2+6z+9=0
(x+1)2+(y-2)2+(z+3)2=0
(x+1)2 \(\ge0,\left(y-2\right)^2\ge0,\left(z+3\right)^2\ge0\)
mà tổng của chúng là 0 nên suy ra mỗi cái =0 nha
từ đó tính đc x,y,z
\(B=2x+12y+6z-x^2-4y^2-z^2-18\)
\(B=-\left(x^2-2x+1\right)-\left[\left(2y\right)^2-12y+9\right]-\left(z^2-6z+9\right)\)
\(B=-\left(x-1\right)^2-\left(2y-3\right)^2-\left(z-3\right)^2\)
Vì \(-\left(x-1\right)^2< 0\)Với mọi x
\(-\left(2y-3\right)^2< 0\)Với mọi y
\(-\left(z-3\right)^2< 0\)Với mọi z
Nên \(-\left(x-1\right)^2-\left(2y-3\right)^2-\left(z-3\right)^2< 0\)Với mọi x, y, z
Vậy GTLN của B \(\Leftrightarrow-\left(x-1\right)^2-\left(2y-3\right)^2-\left(z-3\right)^2=0\)
\(\left\{{}\begin{matrix}-\left(x-1\right)^2=0\\-\left(2y-3\right)^2=0\\-\left(z-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1,5\\z=3\end{matrix}\right.\)
Ta có : \(A=x^2+y^2+z^2-2x-4y+6z=-14\)
\(\Leftrightarrow x^2+y^2+z^2+2x-4y+6z+14=0\)
\(\Leftrightarrow\left(x^2+2x+1\right)+\left(y^2-4y+4\right)+\left(z^2+6z+9\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-2\right)^2+\left(z+3\right)^2=0\left(1\right)\)
Do \(\left(x+1\right)^2\ge0\forall x;\left(y-2\right)^2\ge0\forall y;\left(z+3\right)^2\ge0\forall z\)
\(\Rightarrow\left(x+1\right)^2+\left(y-2\right)^2+\left(z+3\right)^2\ge0\forall x;y;z\left(2\right)\)
Từ ( 1 ) ; ( 2 )
\(\Rightarrow\left\{{}\begin{matrix}\left(x+1\right)^2=0\\\left(y-2\right)^2=0\\\left(z+3\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y-2=0\\z+3=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\\z=-3\end{matrix}\right.\)
\(\Rightarrow x+y+z=-1+2-3=-2\)
Vậy \(x+y+z=-2\)
\(B=x^2-2x+1+y^2-4y+4+z^2-6z+9+t^2-8t+16-30\)
\(=\left(x-1\right)^2+\left(y-2\right)^2+\left(z-3\right)^2+\left(t-4\right)^2-30\ge-30\)
Nên GTNN của B là -30 đạt được khi x=1;y=2;z=3;t=4