K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2018

\(B=x^2-2x+1+y^2-4y+4+z^2-6z+9+t^2-8t+16-30\)

\(=\left(x-1\right)^2+\left(y-2\right)^2+\left(z-3\right)^2+\left(t-4\right)^2-30\ge-30\)

Nên GTNN của B là -30 đạt được khi x=1;y=2;z=3;t=4

AH
Akai Haruma
Giáo viên
30 tháng 10 2019

Bài 1:

\(x^2+y^2-2x-4y+5=0\)

\(\Leftrightarrow (x^2-2x+1)+(y^2-4y+4)=0\)

\(\Leftrightarrow (x-1)^2+(y-2)^2=0\)

Vì $(x-1)^2; (y-2)^2\geq 0$ với mọi $x,y\in\mathbb{R}$ nên để tổng của chúng bằng $0$ thì $(x-1)^2=(y-2)^2=0$

$\Rightarrow x=1; y=2$

Vậy...........

AH
Akai Haruma
Giáo viên
30 tháng 10 2019

Bài 2:

Ta có:

\(a(a-b)+b(b-c)+c(c-a)=0\)

\(\Leftrightarrow 2a(a-b)+2b(b-c)+2c(c-a)=0\)

\(\Leftrightarrow (a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ca+a^2)=0\)

\(\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0\)

Lập luận tương tự bài 1, ta suy ra :

\((a-b)^2=(b-c)^2=(c-a)^2=0\Rightarrow a=b=c\)

Khi đó, thay $b=c=a$ ta có:

\(P=a^3+b^3+c^3-3abc+3ab-3c+5\)

\(=3a^3-3a^3+3a^2-3a+5=3a^2-3a+5\)

\(=3(a^2-a+\frac{1}{4})+\frac{17}{4}=3(a-\frac{1}{2})^2+\frac{17}{4}\geq \frac{17}{4}\)

Vậy $P_{\min}=\frac{17}{4}$

Giá trị này đạt được tại $b=c=a=\frac{1}{2}$

28 tháng 12 2017

\(-\left(2x^2+y^2+2xy-4x-2y-5\right)\\ \\ =-\left(x^2+2x\left(y-1\right)+\left(y^2-2y+1\right)+\left(x^2-2x+1\right)-7\right)\\ =-\left(x^2+2x\left(y-1\right)+\left(y-1\right)^2+\left(x-1\right)^2-7\right)\\ =-\left(\left(x+y-1\right)^2+\left(x-1\right)^2-7\right)\\ =-\left(x+y-1\right)^2-\left(x-1\right)^2-7\)

\(\left(x+y-1\right)^2\ge0\\ \Rightarrow-\left(x+y-1\right)^2\le0\\ \left(x-1\right)^2\ge0\\ \Rightarrow-\left(x+y-1\right)^2-\left(x-1\right)^2\le0\\ \Rightarrow-\left(x+y-1\right)^2-\left(x-1\right)^2-7\le-7\)

Max A = -7 khi x=1 ; y=0

B) TT

9 tháng 10 2016

x2+2x+1+y2-4y+4+z2+6z+9=0

(x+1)2+(y-2)2+(z+3)2=0

(x+1)\(\ge0,\left(y-2\right)^2\ge0,\left(z+3\right)^2\ge0\)

mà tổng của chúng là 0 nên suy ra mỗi cái =0 nha

từ đó tính đc x,y,z

9 tháng 10 2016

trả lời đầu tiên mk cho ko cần xét đúng sai 

29 tháng 10 2017

\(B=2x+12y+6z-x^2-4y^2-z^2-18\)

\(B=-\left(x^2-2x+1\right)-\left[\left(2y\right)^2-12y+9\right]-\left(z^2-6z+9\right)\)

\(B=-\left(x-1\right)^2-\left(2y-3\right)^2-\left(z-3\right)^2\)

\(-\left(x-1\right)^2< 0\)Với mọi x

\(-\left(2y-3\right)^2< 0\)Với mọi y

\(-\left(z-3\right)^2< 0\)Với mọi z

Nên \(-\left(x-1\right)^2-\left(2y-3\right)^2-\left(z-3\right)^2< 0\)Với mọi x, y, z

Vậy GTLN của B \(\Leftrightarrow-\left(x-1\right)^2-\left(2y-3\right)^2-\left(z-3\right)^2=0\)

\(\left\{{}\begin{matrix}-\left(x-1\right)^2=0\\-\left(2y-3\right)^2=0\\-\left(z-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1,5\\z=3\end{matrix}\right.\)

29 tháng 10 2017

AK mk quên GTLN = 0 nhs bn !!!!

22 tháng 10 2018

Ta có : \(A=x^2+y^2+z^2-2x-4y+6z=-14\)

\(\Leftrightarrow x^2+y^2+z^2+2x-4y+6z+14=0\)

\(\Leftrightarrow\left(x^2+2x+1\right)+\left(y^2-4y+4\right)+\left(z^2+6z+9\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-2\right)^2+\left(z+3\right)^2=0\left(1\right)\)

Do \(\left(x+1\right)^2\ge0\forall x;\left(y-2\right)^2\ge0\forall y;\left(z+3\right)^2\ge0\forall z\)

\(\Rightarrow\left(x+1\right)^2+\left(y-2\right)^2+\left(z+3\right)^2\ge0\forall x;y;z\left(2\right)\)

Từ ( 1 ) ; ( 2 )

\(\Rightarrow\left\{{}\begin{matrix}\left(x+1\right)^2=0\\\left(y-2\right)^2=0\\\left(z+3\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y-2=0\\z+3=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\\z=-3\end{matrix}\right.\)

\(\Rightarrow x+y+z=-1+2-3=-2\)

Vậy \(x+y+z=-2\)