\(\dfrac{x+6\sqrt{x}+34}{\sqrt{x}+3}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2018

\(B=\dfrac{x+6\sqrt{x}+34}{\sqrt{x}+3}=\dfrac{x+6\sqrt{x}+9+25}{\sqrt{x}+3}=\dfrac{\left(\sqrt{x}+3\right)^2}{\sqrt{x}+3}+\dfrac{25}{\sqrt{x}+3}=\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}\) Áp dụng BĐT Cauchy cho các số dương , ta có :

\(\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}\)\(2\sqrt{\left(\sqrt{x}+3\right).\dfrac{25}{\sqrt{x}+3}}=2.5=10\)

\(B_{MIN}=10."="\)\(x=4\)

18 tháng 7 2018

thanks

22 tháng 12 2018

@Akai Haruma

10 tháng 12 2022

\(M=\dfrac{x+6\sqrt{x}+9+25}{\sqrt{x}+3}=\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}>=2\cdot\sqrt{25}=10\)

Dấu = xảy ra khi x=4

27 tháng 10 2022

1: Sửa đề: \(B=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{-3\left(\sqrt{x}+1\right)}{\sqrt{x}+3}\cdot\dfrac{1}{\sqrt{x}+1}=\dfrac{-3}{\sqrt{x}+3}\)

2: Để B<=-1/2 thì B+1/2<=0

=>-3/căn x+3+1/2<=0

=>-6+căn x+3<=0

=>căn x<=3

=>0<x<9

3: Để B là số nguyên thì \(\sqrt{x}+3=3\)

=>x=0

Y
15 tháng 4 2019

\(N=\frac{B}{\sqrt{x}}=\frac{x-3\sqrt{x}+2}{\sqrt{x}}\cdot\frac{1}{\sqrt{x}}=\frac{x-3\sqrt{x}+2}{x}\)

\(N=1-\frac{3\sqrt{x}}{x}+\frac{2}{x}\)

\(N=2\left(\frac{1}{x}-\frac{3}{2\sqrt{x}}+\frac{1}{2}\right)\)

\(N=2\left[\left(\frac{1}{\sqrt{x}}\right)^2-2\cdot\frac{1}{\sqrt{x}}\cdot\frac{3}{4}+\frac{9}{16}-\frac{1}{16}\right]\)

\(N=2\left(\frac{1}{\sqrt{x}}-\frac{3}{4}\right)^2-\frac{1}{8}\) \(\ge-\frac{1}{8}\forall x\)

\(N=-\frac{1}{8}\) \(\Leftrightarrow\frac{1}{\sqrt{x}}=\frac{3}{4}\)\(\Leftrightarrow x=\frac{16}{9}\)

Vậy Min N \(=-\frac{1}{8}\Leftrightarrow x=\frac{16}{9}\)

9 tháng 11 2017

Câu 3

a, ĐKXĐ: x>0, x\(\ne\)4

M=( \(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\)). \(\dfrac{\sqrt{x}+2}{\sqrt{4x}}\)

M= \(\left(\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\). \(\dfrac{\sqrt{x}+2}{\sqrt{4x}}\)

M= \(\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\). \(\dfrac{\sqrt{x}+2}{\sqrt{4x}}\)

M= \(\dfrac{2x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{\sqrt{x}+2}{\sqrt{4x}}\)

M= \(\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

b, Thay x= \(6+4\sqrt{2}\) ( x>0, x\(\ne\)4) ta có:

M= \(\dfrac{\sqrt{6+4\sqrt{2}}}{\sqrt{6+4\sqrt{2}}-2}\)

= \(\dfrac{\sqrt{\left(\sqrt{2}+2\right)^2}}{\sqrt{\left(\sqrt{2}+2\right)^2-2}}\) = \(\dfrac{\sqrt{2}+2}{\sqrt{2}+2-2}\)

= \(\dfrac{\sqrt{2}\left(1+\sqrt{2}\right)}{\sqrt{2}}\) = \(1+\sqrt{2}\)

Vậy khi x= \(6+4\sqrt{2}\) thì M= \(1+\sqrt{2}\)

c, Để M<1 <=> \(\dfrac{\sqrt{x}}{\sqrt{x}-2}< 1\)

<=> \(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-2}< 0\)

<=> \(\dfrac{2}{\sqrt{x}-2}< 0\)

Vì 2>0 <=> \(\sqrt{x}-2< 0\)

<=> \(\sqrt{x}< 2\)

<=> x<4

Vậy để M<1 thì 0<x<4

<=>

9 tháng 11 2017

Câu 2

a, \(\sqrt{3x+2}=5\) (x\(\ge\dfrac{-2}{3}\))

<=> \(\sqrt{3x+2}=\sqrt{25}\)

<=> 3x+2=25

<=> 3x= 23

<=> x=\(\dfrac{23}{3}\)

Vậy S= \(\left\{\dfrac{23}{3}\right\}\)

24 tháng 4 2019

ĐK: \(x\ge0\)

Ta có:

M = \(\frac{x+6\sqrt{x}+34}{\sqrt{x}+3}\)

=\(\frac{x+6\sqrt{x}+9+25}{\sqrt{x}+3}\)

= \(\frac{\left(\sqrt{x}+3\right)^2+25}{\sqrt{x}+3}\)

=\(\sqrt{x}+3+\frac{25}{\sqrt{x}+3}\)

Áp dụng BĐT Cauchy cho hai số không âm ta có:

\(\sqrt{x}+3+\frac{25}{\sqrt{x}+3}\ge2\sqrt{\left(\sqrt{x}+3\right)\frac{25}{\sqrt{x}+3}}=2.5=10\)

Hay \(M\ge10\)

Dấu '=' xảy ra \(\Leftrightarrow\sqrt{x}+3=\frac{25}{\sqrt{x}+3}\)

\(\Leftrightarrow\left(\sqrt{x}+3\right)^2=25\)

\(\Leftrightarrow\sqrt{x}+3=5\)(vì \(x\ge0\Rightarrow\sqrt{x}\ge0\Rightarrow\sqrt{x}+3\ge3\))

\(\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(TM\right)\)

Vậy,...

Học giỏi toán nhé! banhqua

24 tháng 4 2019

ĐK \(x\ge0\)

\(M=\frac{x+16\sqrt{x}+64-10\sqrt{x}-30}{\sqrt{x}+3}\)

\(M=\frac{\left(\sqrt{x}+8\right)^2-10\left(\sqrt{x}-3\right)}{\sqrt{x}+3}\)

\(M=\frac{\left(\sqrt{x}+8\right)^2}{\sqrt{x}+3}-10\)

ta có điều kiện \(x\ge0\) vậy \(M_{min}\) khi x=0

\(M_{min}=\frac{\left(\sqrt{0}+8\right)^2}{\sqrt{0}+3}-10=\frac{64}{3}-10=\frac{34}{3}\)

vậy \(M_{min}=\frac{34}{3}\) khi x=0