K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2018

\(A=\left|x-7\right|+6\)

có : \(\left|x-7\right|\ge0\)

\(\Rightarrow\left|x-7\right|+6\ge6\)

dấu ''='' xảy ra khi |x - 7| = 0

=> x - 7 = 0

=> x = 7

vậy_ 

b tương tự

22 tháng 9 2018

thanks

23 tháng 9 2018

A=|x-7|+6

Vì |x-7| ≥ 0 nên |x-7|+6 ≥ 6

GTNN A = 6 khi và chỉ khi |x-7|=0⇒x=7

Câu B làm tương tự câu A nha bạnhehe

\(B=\left|\dfrac{3}{5}-x\right|+\dfrac{1}{9}>=\dfrac{1}{9}\)

Dấu '=' xảy ra khi x=3/5

3 tháng 9 2016

1,

Có \(\sqrt{x}\ge0\)với mọi x

=> 2 + \(\sqrt{x}\ge\)2 với mọi x

=> A \(\ge\)2 với mọi x

Dấu "=" xảy ra <=> \(\sqrt{x}=0\)<=> x = 0

KL: Amin = 2 <=> x = 0

2, (câu này phải là GTLN chứ nhỉ)

Có \(\sqrt{x-1}\ge0\)với mọi x

=> \(2.\sqrt{x-1}\ge0\)với mọi x

=> \(5-2.\sqrt{x-1}\le5\)với mọi x

=> B \(\le\)5 với mọi x

Dấu "=" xảy ra <=> \(\sqrt{x-1}=0\)<=> x - 1 = 0 <=> x = 1

KL Bmax = 5 <=> x = 1

\(\sqrt{x}\ge0\)

\(\Rightarrow A=2+\sqrt{x}\ge2+0\ge2\)

\(MinA=2\Leftrightarrow\sqrt{x}=0\Rightarrow x=0\)

2) \(5-2\sqrt{x-1}\le5\)

\(MinA=5\Leftrightarrow x-1=0\Rightarrow x=1\)

4 tháng 3 2017

Mmin=-1 khi y=3 và x=+-3

4 tháng 3 2017

Làm như nào vậy. bạn giải rõ ràng ra đi

16 tháng 4 2016

a. 5 - 3 |x| = -7 

<=> 3 |x| = 12

<=> |x| = 4

<=> x = 2 hoặc x = -2

b. |x+2| = 9

<=> x+2 = 9 hoặc x+2 = -9

<=> x = 7 hoặc x = -11 

Mấy chố hoặc bạn dùng dấu ngoặc vuông nhé

7 tháng 10 2016

câu 1 sai đề

2. =9/3 vì căn x-5 lớn hơn hoặc bằng 0

4 tháng 2 2019

Trước hết ta chứng minh bổ đề: \(|a|+|b|\ge|a+b|.\left(1\right)\)

CM: \(\left(1\right)\Leftrightarrow\left(|a|+|b|\right)^2\ge\left(|a+b\right)^2\)

                  \(\Leftrightarrow a^2+b^2+2|ab|\ge a^2+b^2+2ab\)

                  \(\Leftrightarrow2|ab|\ge2ab\)

                  \(\Leftrightarrow\left|ab\right|\ge ab\)(điều này đúng do tính chất của giá trị tuyệt đối).

Vậy ta có đpcm. Dấu bằng xảy ra \(\Leftrightarrow ab\ge0.\)

a) A = \(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|+\left|x-2\right|.\)

Ta thấy rằng \(\left|x-2\right|\ge0\)với mọi x.

Áp dụng bổ đề trên ta có:

\(A\ge\left|x-1+3-x\right|+0=\left|2\right|+0=2+0=2.\)

Dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)\left(3-x\right)\ge0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}1\le x\le3\\x=2\end{cases}}\Leftrightarrow x=2.\)

Vậy GTNN của A bằng 2 khi x = 2.

b) Áp dụng bổ đề trên ta có:\(B=\left|x-4\right|+\left|7-x\right|+\left|x-5\right|+\left|6-x\right|\ge\left|x-4+7-x\right|+\left|x-5+6-x\right|=\left|3\right|+\left|1\right|=3+1=4.\)

Dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-4\right)\left(7-x\right)\ge0\\\left(x-5\right)\left(6-x\right)\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}4\le x\le7\\5\le x\le6\end{cases}\Leftrightarrow}5\le x\le6}\)(vì với mọi x nằm giữa 5 và 6 thì cũng nằm giữa 4 và 7).

Vậy GTNN của B bằng 4 khi \(5\le x\le6.\)

4 tháng 2 2019

a;\(A=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)

\(\Rightarrow A=\left|x-1\right|+\left|x-2\right|+\left|3-x\right|\)

Ta có +) \(\left|x+1\right|+\left|3-x\right|\ge\left|x+1+3-x\right|=4\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)\left(3-x\right)\ge0\Leftrightarrow1\le x\le3\)

+)\(\left|x-2\right|\ge0\)Dấu "=" xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

\(\Rightarrow A=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\ge2\)

\(\Rightarrow A_{min}=2\Leftrightarrow\hept{\begin{cases}1\le x\le3\\x=2\end{cases}\Leftrightarrow x=2}\)

b;\(B=\left|x-4\right|+\left|x-5\right|+\left|x-6\right|+\left|x-7\right|\)

\(\Rightarrow B=\left|x-4\right|+\left|x-5\right|+\left|6-x\right|+\left|7-x\right|\)

Ta có +) \(\left|x-4\right|+\left|7-x\right|\ge\left|x-4+7-x\right|=3\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-4\right)\left(7-x\right)\ge0\Leftrightarrow4\le x\le7\)

+) \(\left|x-5\right|+\left|6-x\right|\ge\left|x-5+6-x\right|=1\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-5\right)\left(6-x\right)\ge0\Leftrightarrow5\le x\le6\)

\(\Rightarrow B=\left|x-4\right|+\left|x-5\right|+\left|x-6\right|+\left|x-7\right|\ge4\)

\(\Rightarrow B_{min}=4\Leftrightarrow\hept{\begin{cases}4\le x\le7\\5\le x\le6\end{cases}\Leftrightarrow5\le x\le6}\)

22 tháng 9 2016

a) |2x-1|=5-x

\(\Leftrightarrow\orbr{\begin{cases}2x-1=5-x\\2x-1=-5+x\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)

b)|2x-1|>2     <=>\(\orbr{\begin{cases}2x-1>2\\2x-1< -2\end{cases}\Leftrightarrow}\orbr{\begin{cases}x>\frac{3}{2}\\x< \frac{-1}{2}\end{cases}}\)

c)\(\Leftrightarrow-5< 3x-7< 5\)   <=>2/3<x<4