Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Ta có |-x+8| > 0 V x =>A > -21 V x
*Dấu = xảy ra khi -8+x=0 =>x=8
Vậy Amin= -21 khi x = 8
b, Ta có: -3(3x-12)2 < 0 V x =>D < -37 V x
*Dấu = xảy ra khi 3x-12=0 =>x=4
Vậy Dmax = -37 khi x=4
a) ta có : \(|-x+8|\ge0\)
=> \(|-x+8|-21\ge-21\)
=> A \(\ge-21\)
Vậy A đạt GTNN là -21 khi x=8
b) ta có :\(|-x-17|+|y-36|\ge0\)
=> \(|-x-17|+|y-36|+12\ge0+12\)
=> B \(\ge12\)
Vậy B đạt GTNN là 12 khi x=-17 và y =36
c) ta có: \(-|2x-8|\le0\)
=> \(-|2x-8|-35\le0-35\)
=> C \(\le-35\)
Vậy C đạt GTLN là -35 khi 2x-8=0==> x=4
d) ta có : \(3.\left(3x-12\right)^2\ge0\)
=> \(3.\left(3x-12\right)^2-35\ge0-35\)
=> \(D\ge-35\)
Vậy D đạt GTNN là -35 khi x =4
e) ta có : \(-3.|2x+50|\le0\)
=>: \(-21-3.|2x+50|\le0-21\)
=> E \(\le-21\)
vậy E đạt GTLN là -21 khi x=-25
A = \(\dfrac{3}{\left(x-3\right)^2+5}\)
Vì (\(x\) - 3)2 ≥ 0 ⇒ (\(x\) - 3)2 + 5 ≥ 5 ∀ \(x\)
3 > 0; (\(x\) - 3)2 + 5 ≥ 5
⇒ A = \(\dfrac{3}{\left(x-3\right)^2+5}\) ≤ \(\dfrac{3}{5}\)
Vậy Amax = \(\dfrac{3}{5}\) xảy ra khi (\(x\) - 3)2 = 0 ⇒ \(x\) = 3
Kết luận giá trị lớn nhất của A là \(\dfrac{3}{5}\); Xảy ra khi \(x\) = 3