K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2017

\(A=\left(x^2-4x+4\right)+2014=\left(x-2\right)^2+2014\ge2014\)Vậy minA = 2014 khi x = 2 (maxA không tồn tại)

Câu B có thể bạn đã viết nhầm hạng tử cuối nên mình xin giải cả 2 trường hợp:

\(B=10-x^2-2x=-\left(x^2+2x+1\right)+11=-\left(x+1\right)^2+11\le11\)=> maxB = 11 khi x = -1 (minB không tồn tại)

** \(B=10-x^2-2x^2=-3x^2+10\le10\)=> maxB = 10 khi x = 0 (minB không tồn tại)

24 tháng 6 2017

mk ghi câu b hạng tử cuối sai B = 10-x2-2x

22 tháng 10 2020

A = -x2 - 4x - y2 + 2y

= -( x2 + 4x + 4 ) - ( y2 - 2y + 1 ) + 5

= -( x + 2 )2 - ( y - 1 )2 + 5 ≤ 5 ∀ x, y

Dấu "=" xảy ra khi x = -2 ; y = 1

=> MaxA = 5 <=> x = -2 ; y = 1

B = \(\frac{2020}{x^2+2x+6}\)

Để B đạt GTLN => x2 + 2x + 6 đạt GTNN

Ta có : x2 + 2x + 6 = ( x2 + 2x + 1 ) + 5 = ( x + 1 )2 + 5 ≥ 5 ∀ x

Dấu "=" xảy ra khi x = -1

=> Min( x2 + 2x + 6 ) = 5

=> MaxB = 2020/5 = 404 khi x = -1

C = \(\frac{15}{6x-x^2-14}\)

Để C đạt GTNN => 6x - x2 - 14 đạt GTLN

Ta có : 6x - x2 - 14 = -( x2 - 6x + 9 ) - 5 = -( x - 3 )2 - 5 ≤ -5 ∀ x

Dấu "=" xảy ra khi x = 3

=> Max( 6x - x2 - 14 ) = -5

=> MinC = 15/(-5) = -3 khi x = 3

6 tháng 7 2017

Ta có : x2 - 2x + 5

= x2 - 2x + 1 + 4

= (x - 1)2 + 4

Mà (x - 1)2 \(\ge0\forall x\)

Nên (x - 1)2 + 4 \(\ge4\forall x\)

Vậy GTNN của biểu thức là : 4 khi và chỉ khi x = 1

2 tháng 10 2019

\(P=x^2-2x+5\)

\(P=x^2-2x+1+4\)

\(P=\left(x-1\right)^2+4\ge4\)

=> GTNN của P = 4 

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x=1\)

Vậy................

\(A=x^2+12x+36=x^2+12x+36+3=\left(x+6\right)^2+3\ge3\)

Dấu '=' xảy ra khi x=-6

\(B=9x^2-12x+4-4=\left(3x-2\right)^2-4\ge-4\)

Dấu '=' xảy ra khi x=2/3

\(C=-x^2+4x+1\)

\(=-\left(x^2-4x-1\right)=-\left(x^2-4x+4-5\right)\)

\(=-\left(x-2\right)^2+5\le5\forall x\)

Dấu '=' xảy ra khi x=2

9 tháng 7 2017

tìm GTNN:

a) \(x^2-2x+5\)

\(=x^2-2x+4+1\)

\(=\left(x-2\right)^2+1\ge1\)

vậy GTNN của biểu thức trên =1 khi x=2

9 tháng 7 2017

a) Ta có : x2 - 2x + 5

= x2 - 2x + 1 + 4

= (x - 1)2 + 4

Mà (x - 1)2 \(\ge0\forall x\)

=> (x - 1)2 + 4 \(\ge4\forall x\)

Vậy GTNN của biểu thức là 4 khi x = 1

6 tháng 7 2017

1) a)

 \(P=x^2-2x+5\)

\(=x^2-2x+4+1\)

\(=\left(x+2\right)^2+1\ge1\)

vậy min O =1 khi x= -2

6 tháng 7 2017

1) 

c) K = 4x - x2 - 5 

= -x2 + 4x - 4 - 1

= - (x2 - 4x + 4) - 1

= - (x - 2)2 - 1

Vì (x - 2)2 \(\ge0\forall x\)

=>  - (x - 2)\(\le0\forall x\)

=> -(x - 2)2 \(\le-1\forall x\)

Vậy GTLN của biểu thức là - 1 khi và chi x = 2

12 tháng 7 2018

1/

a, \(A=4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)

Dấu "=" xảy ra khi x=1/2

Vậy Amin=4 khi x=1/2

b, \(B=3x^2+6x-1=3\left(x^2+2x+1\right)-4=3\left(x+1\right)^2-4\ge-4\)

Dấu "=" xảy ra khi x=-1

Vậy Bmin = -4 khi x=-1

2/

a, \(A=10+6x-x^2=-\left(x^2-6x+9\right)+19=-\left(x-3\right)^2+19\le19\)

Dấu "=" xảy ra khi x=3

Vậy Amax = 19 khi x=3

b, \(B=7-5x-2x^2=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}\right)+\frac{31}{8}=-2\left(x-\frac{5}{4}\right)^2+\frac{31}{8}\le\frac{31}{8}\)

Dấu "=" xảy ra khi x=5/4

Vậy Bmax = 31/8 khi x=5/4

19 tháng 7 2017

Ta có : x2 + 4x 

= x2 + 4x + 4 - 4

= (x + 2)2 - 4 

Mà ; (x + 2)\(\ge0\forall x\)

Nên : (x + 2)2 - 4 \(\ge-4\forall x\)

Vậy GTNN của biểu thức là -4 khi x = -2

19 tháng 7 2017

Ta có : 4x2 - 4x - 1

= (2x)2 - 4x + 1 - 1

= (2x - 1)2 - 1

Mà : (2x - 1)2 \(\ge0\forall x\)

Nên : (2x - 1)2 - 1 \(\ge-1\forall x\)

Vậy GTNN của biểu thức là - 1 khi x = \(\frac{1}{2}\)

19 tháng 7 2017

giúp mấy câu tiếp theo với