Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = -x2 - 4x - y2 + 2y
= -( x2 + 4x + 4 ) - ( y2 - 2y + 1 ) + 5
= -( x + 2 )2 - ( y - 1 )2 + 5 ≤ 5 ∀ x, y
Dấu "=" xảy ra khi x = -2 ; y = 1
=> MaxA = 5 <=> x = -2 ; y = 1
B = \(\frac{2020}{x^2+2x+6}\)
Để B đạt GTLN => x2 + 2x + 6 đạt GTNN
Ta có : x2 + 2x + 6 = ( x2 + 2x + 1 ) + 5 = ( x + 1 )2 + 5 ≥ 5 ∀ x
Dấu "=" xảy ra khi x = -1
=> Min( x2 + 2x + 6 ) = 5
=> MaxB = 2020/5 = 404 khi x = -1
C = \(\frac{15}{6x-x^2-14}\)
Để C đạt GTNN => 6x - x2 - 14 đạt GTLN
Ta có : 6x - x2 - 14 = -( x2 - 6x + 9 ) - 5 = -( x - 3 )2 - 5 ≤ -5 ∀ x
Dấu "=" xảy ra khi x = 3
=> Max( 6x - x2 - 14 ) = -5
=> MinC = 15/(-5) = -3 khi x = 3
Ta có : x2 - 2x + 5
= x2 - 2x + 1 + 4
= (x - 1)2 + 4
Mà (x - 1)2 \(\ge0\forall x\)
Nên (x - 1)2 + 4 \(\ge4\forall x\)
Vậy GTNN của biểu thức là : 4 khi và chỉ khi x = 1
\(P=x^2-2x+5\)
\(P=x^2-2x+1+4\)
\(P=\left(x-1\right)^2+4\ge4\)
=> GTNN của P = 4
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x=1\)
Vậy................
\(A=x^2+12x+36=x^2+12x+36+3=\left(x+6\right)^2+3\ge3\)
Dấu '=' xảy ra khi x=-6
\(B=9x^2-12x+4-4=\left(3x-2\right)^2-4\ge-4\)
Dấu '=' xảy ra khi x=2/3
\(C=-x^2+4x+1\)
\(=-\left(x^2-4x-1\right)=-\left(x^2-4x+4-5\right)\)
\(=-\left(x-2\right)^2+5\le5\forall x\)
Dấu '=' xảy ra khi x=2
tìm GTNN:
a) \(x^2-2x+5\)
\(=x^2-2x+4+1\)
\(=\left(x-2\right)^2+1\ge1\)
vậy GTNN của biểu thức trên =1 khi x=2
a) Ta có : x2 - 2x + 5
= x2 - 2x + 1 + 4
= (x - 1)2 + 4
Mà (x - 1)2 \(\ge0\forall x\)
=> (x - 1)2 + 4 \(\ge4\forall x\)
Vậy GTNN của biểu thức là 4 khi x = 1
1) a)
\(P=x^2-2x+5\)
\(=x^2-2x+4+1\)
\(=\left(x+2\right)^2+1\ge1\)
vậy min O =1 khi x= -2
1)
c) K = 4x - x2 - 5
= -x2 + 4x - 4 - 1
= - (x2 - 4x + 4) - 1
= - (x - 2)2 - 1
Vì (x - 2)2 \(\ge0\forall x\)
=> - (x - 2)2 \(\le0\forall x\)
=> -(x - 2)2 \(\le-1\forall x\)
Vậy GTLN của biểu thức là - 1 khi và chi x = 2
1/
a, \(A=4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)
Dấu "=" xảy ra khi x=1/2
Vậy Amin=4 khi x=1/2
b, \(B=3x^2+6x-1=3\left(x^2+2x+1\right)-4=3\left(x+1\right)^2-4\ge-4\)
Dấu "=" xảy ra khi x=-1
Vậy Bmin = -4 khi x=-1
2/
a, \(A=10+6x-x^2=-\left(x^2-6x+9\right)+19=-\left(x-3\right)^2+19\le19\)
Dấu "=" xảy ra khi x=3
Vậy Amax = 19 khi x=3
b, \(B=7-5x-2x^2=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}\right)+\frac{31}{8}=-2\left(x-\frac{5}{4}\right)^2+\frac{31}{8}\le\frac{31}{8}\)
Dấu "=" xảy ra khi x=5/4
Vậy Bmax = 31/8 khi x=5/4
Ta có : x2 + 4x
= x2 + 4x + 4 - 4
= (x + 2)2 - 4
Mà ; (x + 2)2 \(\ge0\forall x\)
Nên : (x + 2)2 - 4 \(\ge-4\forall x\)
Vậy GTNN của biểu thức là -4 khi x = -2
Ta có : 4x2 - 4x - 1
= (2x)2 - 4x + 1 - 1
= (2x - 1)2 - 1
Mà : (2x - 1)2 \(\ge0\forall x\)
Nên : (2x - 1)2 - 1 \(\ge-1\forall x\)
Vậy GTNN của biểu thức là - 1 khi x = \(\frac{1}{2}\)
\(A=\left(x^2-4x+4\right)+2014=\left(x-2\right)^2+2014\ge2014\)Vậy minA = 2014 khi x = 2 (maxA không tồn tại)
Câu B có thể bạn đã viết nhầm hạng tử cuối nên mình xin giải cả 2 trường hợp:
* \(B=10-x^2-2x=-\left(x^2+2x+1\right)+11=-\left(x+1\right)^2+11\le11\)=> maxB = 11 khi x = -1 (minB không tồn tại)
** \(B=10-x^2-2x^2=-3x^2+10\le10\)=> maxB = 10 khi x = 0 (minB không tồn tại)
mk ghi câu b hạng tử cuối sai B = 10-x2-2x