Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x-1/2)2 + (y + 3)2 -1/4 +10 -9
GTNN = 3/4
(giải theo pp học vnen)
Max:
\(M=\frac{x^2+xy+y^2}{x^2+y^2}=1+\frac{xy}{x^2+y^2}\le1+\frac{xy}{2\left|xy\right|}\le1+\frac{xy}{2xy}=1+\frac{1}{2}=\frac{3}{2}\)
Dấu "=" xảy ra tại x=y
\(x^4+x^2>=2\sqrt{x^4\cdot x^2}=2x^3;x^2+1>=2\sqrt{x^2}=2x;x^4+1>=2\sqrt{x^4}=2x^2\)(bđt cosi)
\(\Rightarrow x^4+x^2+x^2+1+x^4+1=2\left(x^4+x^2+1\right)>=2\left(x^3+x+x^2\right)\Rightarrow x^4+x^2+1>=x^3+x^2+x\)
\(\Rightarrow M=\frac{x^2}{x^4+x^2+1}< =\frac{x^2}{x^3+x^2+x}\)
\(x^3+x^2+x>=3\sqrt[3]{x^3x^2x}=3\sqrt[3]{x^6}=3x^2\)(bđt cosi)\(\Rightarrow\frac{x^2}{x^3+x^2+x}< =\frac{x^2}{3x^2}=\frac{1}{3}\Rightarrow M< =\frac{1}{3}\)
dáu = xảy ra khi x=1
vậy max M là \(\frac{1}{3}\)khi x=1
mk lm sai rồi lm lại nhé
\(x^4,x^2>=0;1>0\Rightarrow x^4+x^2+1>=3\sqrt[3]{x^4\cdot x^2\cdot1}=3\sqrt[3]{x^6}=3x^2\)(bđt cosi)
\(\Rightarrow\frac{x^2}{x^4+x^2+1}< =\frac{x^2}{3x^2}=\frac{1}{3}\)
dấu = xảy ra khi \(x^4=x^2=1\Rightarrow x=+-1\)
vậy max M là \(\frac{1}{3}\)khi x=+-1
\(F=-x^2-2y^2+2xy-y+1\)
\(-F=x^2+2y^2-2xy+y-1\)
\(-F=\left(x^2-2xy+y^2\right)+\left(y^2+y+\frac{1}{4}\right)-\frac{5}{4}\)
\(-F=\left(x-y\right)^2+\left(y+\frac{1}{2}\right)^2-\frac{5}{4}\)
Mà \(\left(x-y\right)^2\ge0\forall x;y\)
\(\left(y+\frac{1}{2}\right)^2\ge0\forall y\)
\(\Rightarrow-F\ge-\frac{5}{4}\)
\(\Leftrightarrow F\le\frac{5}{4}\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x-y=0\\y+\frac{1}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{1}{2}\end{cases}}\)
Vậy \(F_{Max}=\frac{5}{4}\Leftrightarrow x=y=-\frac{1}{2}\)
\(A=20y-y^2\)
\(A=-y^2+20y\)
\(A=-\left(y^2-2.y.10+100-100\right)\)
\(A=-\left(y^2-2.y.10+100\right)+100\)
\(A=-\left(y-10\right)^2+100\le100\)
Dấu = xảy ra khi : \(y-10=0\Leftrightarrow y=10\)
Vậy A max = 100 tại x = 10
Đặt \(A=20y-y^2\)
\(=20y-y^2+100-100\)
\(=-y^2+20-100+100\)
\(=-\left(y^2-20+100\right)+100\)
\(=-\left(y-10\right)^2+100\)
Vì \(-\left(y-10\right)^2\le0;\forall y\)
\(\Rightarrow-\left(y-10\right)^2+100\le0+100;\forall y\)
Hay \(A\le100;\forall y\)
Dấu "=" xảy ra\(\Leftrightarrow\left(y-10\right)^2=0\)
\(\Leftrightarrow y=10\)
Vậy MAX A=100 \(\Leftrightarrow y=10\)