Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo link này: https://olm.vn/hoi-dap/tim-kiem?q=cho+c%C3%A1c+s%E1%BB%91+a.b.c;d+nguy%C3%AAn+d%C6%B0%C6%A1ng+%C4%91%C3%B4i+m%E1%BB%99t+kh%C3%A1c+nhau+t/m:2a+ba+b++2b+cb+c++2c+dc+d++2d+ad+a+=6cmr+A=abcd+l%C3%A0+1+s%E1%BB%91+ch%C3%ADnh+ph%C6%B0%C6%A1ng&id=782453
A = a3 + b3 + c3 - 3abc
= (a+b)3 - 3ab(a+b) + c3 - 3abc
= (a+b+c)(a2 + 2ab + b2 -ac -bc + c2) - 3ab (a+b+c)
=(a+b+c)(a2 + b2 + c2 - ab - bc - ac)
a+ b + c > 0 (dựa giả thiết)
a2 + b2 + c2 - ab - bc - ac > 0 (*)
Chứng minh (*)
\(a^2+b^2+c^2-ab-bc-ac=\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2}\)
1.Đặt P = ( a-b) / c + ( b-c)/a + ( c-a ) /b
Nhân abc với P ta được ; P abc = ab( a-b) + bc ( b-c) + ac ( c-a )
= ab( a-b) + bc ( a-c + b-a ) + ac ( a-c)
= ab( a-b) - bc ( a-b) - bc( c-a) + ca ( c-a)
= b ( a-b)(a-c) - c ( a-b)(c-a)
= ( b-c)(a-b)(a-c)
=> P = (b-c)(a-b)(a-c) / abc
Xét a + b +c = 0 ta được a + b = -c ; c+a = -b , b+c = -a
Đặt Q = c/(a-b) + a/ ( b-c) + b/ ( c-a)
Nhân ( b-c)(c-b)(a-c) . Q ta có : Q = c(c-a)(b-c) + a( a-b)(c-a) + b(a-b)(b-c)
Q = c(c-a)(b-c) + (a-b)(-b-c)(c-a) +b( a-b)(b-c)
Q = c(c-a)(b-c) - b(a-b)(c-a) + b(a-b)(b-c) - c( a-b)(c-a)
Q = c(c-a)( -a+2b-c) + b(a-2c+b)(a-b)
Q = - 3bc(a-b) + 3bc(c-a)
Q = 3bc ( b+c-2a)
Q = -9abc
Suy ra => Q = 9abc / (a-b)(b-c)(c-a)
Vây ta nhân P*Q = ( b-c)(a-b)(a-c) / abc * 9abc / ( a-b)(b-c)(c-a) ( gạch những hạng tử giống nhau đi)
P*Q = 9 ( đpcm)
**************************************...
Chúc bạn học giỏi và may mắn
ta có : các ước tự nhiên của p^4 là:1,p,p2,p3,p4
Giả sử tồn tại 1 số p sao cho tổng các ước của p^4 là 1 số chính phương ta có:
1+p+p2+p3+p4=k2
đến đây rồi biến đổi tiếp,dùng phương pháp chặn 2 đầu là ra
Chúc hok tốt
Bài 1 :
a, \(A=x\left(x-6\right)+10\)
=x^2 - 6x + 10
=x^2 - 2.3x+9+1
=(x-3)^2 +1 >0 Với mọi x dương
Thế chú học có hơn ai không mà sao chú nói vậy đấy ngon làm đi
Vì a,b>0 nên:\(ab>0;\left(a^2-b^2\right)^2\ge0\)
\(\Leftrightarrow ab\left(a^2-b^2\right)^2\ge0\)
\(\Leftrightarrow ab\left(a^4-2a^2b^2+b^4\right)\ge0\)
\(\Leftrightarrow a^5b-2a^3b^3+ab^5\ge0\)
\(\Leftrightarrow a^6+ab^5+a^5b+b^6-a^6-2a^3b^3-b^6\ge0\)
\(\Leftrightarrow a\left(a^5+b^5\right)+b\left(a^5+b^5\right)-\left(a^3+b^3\right)^2\ge0\)
\(\Leftrightarrow\left(a+b\right)\left(a^5+b^5\right)\ge\left(a^3+b^3\right)^2\)
\(\Leftrightarrow a+b\ge a^3+b^3\)(Vì a^5+b^5=a^3+b^3 và a^3+b^3;a^5+b^5>0)
\(\Leftrightarrow a+b\ge\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(\Leftrightarrow a^2-ab+b^2\ge1\)
Vậy GTLN M=1 tại \(a^2-b^2=0\Leftrightarrow a=b\)
\(\Leftrightarrow a^3+a^3=a^5+a^5\)(Vì a=b)
\(\Leftrightarrow\orbr{\begin{cases}a=0\\a=1\end{cases}}\)(TH a=0 loại vì a>0)
\(\Leftrightarrow b=1\)