K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2020

A = (x2 - 3x + 1)(24 + 3x - x2)

A = -(x2 - 3x + 1)(x2 - 3x -24)

A = -[(x2 - 3x + 1)2 - 25(x2 - 3x + 1)]

A = -[(x2 - 3x + 1)2 - 25(x2 - 3x + 1) + 156,25 - 156,25]

A = -(x2 - 3x + 1 - 12,5)2 + 156,25 

A = -(x2 - 3x - 11,5)2 + 156,25 \(\le\)156,25 \(\forall\)x

Dấu "=" xảy ra <=> x2 - 3x - 11,5 = 0

<=> (x2 - 3x + 2,25) = 3,75

<=> (x - 1,5)2 = 3,75

<=> \(\orbr{\begin{cases}x=\frac{3+\sqrt{15}}{2}\\x=\frac{3-\sqrt{15}}{2}\end{cases}}\)

Vậy MaxA = 156,25 khi \(\orbr{\begin{cases}x=\frac{3+\sqrt{15}}{2}\\x=\frac{3-\sqrt{15}}{2}\end{cases}}\)

20 tháng 7 2020

thanks

24 tháng 8 2020

A = -x2 - 4x - 2 = -( x2 + 4x + 4 ) + 2 = -( x + 2 )2 + 2

-( x + 2 )2 ≤ 0 ∀ x => -( x + 2 )2 + 2 ≤ 2

Đẳng thức xảy ra <=> x + 2 = 0 => x = -2

=> MaxA = 2 <=> x = -2

B = -x2 + 10x - 24 = -( x2 - 10x + 25 ) + 1 = -( x - 5 )2 + 1

-( x - 5 )2 ≤ 0 ∀ x => -( x - 5 )2 + 1 ≤ 1

Đẳng thức xảy ra <=> x - 5 = 0 => x = 5

=> MaxB = 1 <=> x = 5 

C = -x2 - x - 1 = -( x2 + x + 1/4 ) - 3/4 = -( x + 1/2 )2 - 3/4

-( x + 1/2 )2 ≤ 0 ∀ x => -( x + 1/2 )2 - 3/4 ≤ -3/4 

Đẳng thức xảy ra <=> x + 1/2 = 0 => x = -1/2

=> MaxC = -3/4 <=> x = -1/2

D = -3x2 - 3x - 3 = -3( x2 + x + 1/4 ) - 9/4 = -3( x + 1/2 )2 - 9/4

-3( x + 1/2 )2 ≤ 0 ∀ x => -3( x + 1/2 )2 - 9/4 ≤ -9/4 

Đẳng thức xảy ra <=> x + 1/2 = 0 => x = -1/2

=> MaxD = -9/4 <=> x = -1/2

1 tháng 1 2016

1/ 0, 71

2/ Tương tự 2 câu 1, 3 nhé!

3/ 11,25

Tick đúng nha! Thanks!

12 tháng 6 2018

\(A=x^2-6x+3\)

\(=\left(x^2-6x+9\right)-6\)

\(=\left(x+3\right)^2-6\)

ma \(\left(x+3\right)^2\ge0\Leftrightarrow\left(x+3\right)^2-6\ge-6\)

vậy gtnn của A là -6 tại x=-3

\(B=x^2+3x+7=\left(x^2+2.\frac{3}{2}x+\frac{9}{4}\right)+\frac{17}{4}\)

\(=\left(x+\frac{3}{2}\right)^2+\frac{17}{4}\ge\frac{17}{4}\)

vay .............................................

2/

\(A=-x^2+4x+8=-\left(x^2-4x+4\right)+12=-\left(x-2\right)^2+12\le12\)

vay .........................................

\(B=-x^2+3x-5=-\left(x^2-2\frac{3}{2}x+\frac{9}{4}\right)-\frac{11}{4}=\left(x-\frac{3}{2}\right)^2-\frac{11}{4}\le-\frac{11}{4}\)

vay.....................................

nếu có sai mong bạn thông cảm

12 tháng 6 2018

ko sao cảm ơn

13 tháng 9 2020

a. \(A=100-2x-x^2=-\left(x+1\right)^2+101\)

Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow-\left(x+1\right)^2+101\le101\)

Dấu "=" xảy ra \(\Leftrightarrow-\left(x+1\right)^2=0\Leftrightarrow x=-1\)

Vậy maxA = 101 <=> x = - 1

b. \(B=-3x^2+x=-3\left(x-\frac{1}{6}\right)^2+\frac{1}{12}\)

Vì \(\left(x-\frac{1}{6}\right)^2\ge0\forall x\) \(\Rightarrow-3\left(x-\frac{1}{6}\right)^2+\frac{1}{12}\le\frac{1}{12}\)

Dấu "=" xảy ra \(\Leftrightarrow-3\left(x-\frac{1}{6}\right)^2=0\Leftrightarrow x=\frac{1}{6}\)

Vậy maxB = 1/12 <=> x = 1/6 

c. \(C=3x\left(1-x\right)=3x-3x^2=-3\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)\(\Rightarrow-3\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\le\frac{3}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow-3\left(x-\frac{1}{2}\right)^2=0\Leftrightarrow x=\frac{1}{2}\)

Vậy maxC = 3/4 <=> x = 1/2

13 tháng 9 2020

A = 100 - 2x - x2

= -( x2 + 2x + 1 ) + 101

= -( x + 1 )2 + 101 ≤ 101 ∀ x

Đẳng thức xảy ra <=> x + 1 = 0 => x = -1

=> MaxA = 101 <=> x = -1

B = -3x2 + x

= -3( x2 - 1/3x + 1/36 ) + 1/12

= -3( x - 1/6 ) + 1/12 ≤ 1/12 ∀ x

Đẳng thức xảy ra <=> x - 1/6 = 0 => x = 1/6

=> MaxB = 1/12 <=> x = 1/6

C = 3x( 1 - x )

= -3x2 + 3x

= -3( x2 - x + 1/4 ) + 3/4

= -3( x - 1/2 )2 + 3/4  ≤ 3/4 ∀ x

Đẳng thức xảy ra <=> x - 1/2 = 0 => x = 1/2

=> MaxC = 3/4 <=> x = 1/2

18 tháng 10 2016

đơn giản wá 

8 tháng 7 2019

a) \(A=x^2-3x-x+3+11\) 

      \(=\left(x^2-4x+4\right)+10\)

      \(=\left(x-2\right)^2+10\ge10\forall x\in R\) 

Dấu "=" xảy ra<=> \(\left(x-2\right)^2=0\Leftrightarrow x=2\) 

b) \(B=5-4x^2+4x\) 

      \(=-\left(4x^2-4x+1\right)+6\) 

      \(=-\left(2x-1\right)^2+6\le6\forall x\in R\)

Dấu "=" xảy ra<=> \(-\left(2x-1\right)^2=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)

c) \(C=\left(x^2-3x+1\right)\left(x^2-3x-1\right)\)

       \(=\left(x^2-3x\right)^2-1\ge-1\forall x\in R\)

Dấu "=" xảy ra<=>\(\left(x^2-3x\right)^2=0\Leftrightarrow x\left(x-3\right)=0\Leftrightarrow x=0;x=3\) 

23 tháng 11 2021

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

a: \(M=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{6}{3\left(x-2\right)}+\dfrac{1}{x+2}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\)

\(=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x+2}\right):\dfrac{x^2-4+10-x^2}{x+2}\)

\(=\dfrac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{6}\)

\(=\dfrac{-1}{x-2}\)

b: Để M đạt giá trị lớn nhất thì x-2=-1

hay x=1

c: Để M=3x thì \(\dfrac{-1}{x-2}=3x\)

\(\Leftrightarrow3x^2-6x+1=0\)

\(\text{Δ}=\left(-6\right)^2-4\cdot3\cdot1=36-12=24\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{6-2\sqrt{6}}{6}=\dfrac{3-\sqrt{6}}{3}\\x_2=\dfrac{3+\sqrt{6}}{3}\end{matrix}\right.\)