Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có A = 3 - 10x\(^2\) - 4xy - 4y\(^2\)
= 3 - ( 10x\(^2\) + 4xy + 4y\(^2\) )
= 3 - ( 9x \(^2\) + x\(^2\) + 2.x . 2y + 4y\(^2\) )
= 3 - \([\)( 3x )\(^2\) + ( x + 2y ) \(^2\) \(]\)
Đánh giá ............
Dấu "=" xảy ra ..........
Đặt: A=3-10x2-4xy-4y2=3-(10x2+4xy+4y2)=3-[9x2+(x2+4xy+4y2)]=3-[9x2+(x+2y)2]
Do [9x2+(x+2y)2]\(\ge\)0 với mọi x, y
=> A=3-[9x2+(x+2y)2]\(\le\)3 với mọi x, y
=> GTLN của A là 3
Đạt được khi x=y=0
a) P = 2x - x2 - 5
= - (x2 - 2x + 5)
= - (x2 - 2x + 1 + 4)
= - \(\left [ (x - 1)^{2} + 4 \right ]\)
= - (x - 1)2 - 4 \(\leq - 4\) , với mọi x
( Vì: - (x - 1)2 < 0, với mọi x, pn ghi kí hiệu nhé, chỗ này ko giải thích cũng dc)
Dấu "=" xảy ra <=> x - 1 = 0
...............................<=> x = 1
Vậy MAX P = - 4 <=> x = 1
b) Q = 4x - x2 + 1
= - (x2 - 4x - 1)
= - (x2 - 4x + 4 - 5)
= - \(\left [ (x - 2)^{2} - 5 \right ]\)
= - (x - 2)2 + 5 \(\leq 5\) với mọi x
( Vì: - (x - 2)2 < 0, với mọi x)
Dấu "=" xảy ra <=> x - 2 = 0
........................<=> x = 2
Vậy MAX Q = 5 <=> x = 2
c) M = 3 - 10x2 - 4xy - 4y2
= 3 - 9x2 - x2 - 4xy - 4y2
= 3 - 9x2 - (x2 + 4xy + 4y2)
= 3 - (3x)2 - (x + 2y)2 \(\leq \) 3 , với mọi x,y (ghi kí hiệu nhé)
Dấu ''='' xảy ra <=> \(\begin{bmatrix} 3x = 0 & & \\ x + 2y =0 & & \end{bmatrix}\)pn bỏ dấu bên phải nhé
.........................<=> \(\begin{bmatrix} x = 0 & & \\ y =0 & & \end{bmatrix}\)
Vậy MAX M = 3 <=> x = 0; y = 0
a, Đề sai bạn ơi phải là cộng 16 chứ không phải cộng 4
b,B= (x-2y+1)^2
1,2x2+2y2+z2+2xy+2xz+2yz+10x+6y+34=0
<=>(x2+y2+z2+2xy+2xz+2yz)+(x2+10x+25)+(y2+6y+9)=0
<=>(x+y+z)2+(x+5)2+(y+3)2=0
Mà \(\hept{\begin{cases}\left(x+y+z\right)^2\ge0\\\left(x+5\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}\Rightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2\ge0}\)
\(\Rightarrow\hept{\begin{cases}\left(x+y+z\right)^2=0\\\left(x+5\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x+y+z=0\\x=-5\\y=-3\end{cases}\Rightarrow}\hept{\begin{cases}z=8\\x=-5\\y=-3\end{cases}}}\)
2, A=2x2+4y2+4xy+2x+4y+9
=(x2+4xy+4y2)+(2x+4y)+x2+9
=[(x+2y)2+2(x+2y)+1]+x2+8
=(x+2y+1)2+x2+8
Vì \(\hept{\begin{cases}\left(x+2y+1\right)^2\ge0\\x^2\ge0\end{cases}}\Rightarrow\left(x+2y+1\right)^2+x^2\ge0\)
\(\Rightarrow\left(x+2y+1\right)^2+x^2+8\ge8\)
Dấu "=" xảy ra khi x=0,y=-1/2
Vậy Amin = 8 khi x=0,y=-1/2
Bài 1:
Ta có:\(2x^2+2y^2+z^2+2xy+2xz+2yz+10x+6y+34=0\)
\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2xz+2yz\right)+\left(x^2+10x+25\right)+\left(y^2+6y+9\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)
Vì 3 vế trên đều dương ,nên ta có
\(\hept{\begin{cases}x+y+z=0\\x+5=0\\y+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}z=0-y-x\\x=-5\\y=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}z=0+3+5=8\\x=-5\\y-3\end{cases}}}\)
Vậy ...........................................................................................................................
\(A=x^2-6x+11\)
\(A=\left(x^2-6x+9\right)+2\)
\(A=\left(x-3\right)^2+2\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-3\right)^2=0\)
\(\Leftrightarrow\)\(x-3=0\)
\(\Leftrightarrow\)\(x=3\)
Vậy GTNN của \(A\) là \(2\) khi \(x=3\)
\(B=x^2-20x+101\)
\(B=\left(x^2-20x+100\right)+1\)
\(B=\left(x-10\right)^2+1\ge1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-10\right)^2=0\)
\(\Leftrightarrow\)\(x-10=0\)
\(\Leftrightarrow\)\(x=10\)
Vậy GTNN của \(B\) là \(1\) khi \(x=10\)
Chúc bạn học tốt ~
\(A=x^2-6x+11\)
\(A=\left(x^2-6x+9\right)+2\)
\(A=\left(x-3\right)^2+2\)
Mà \(\left(x-3\right)^2\ge0\)
\(\Rightarrow A\ge2\)
Dấu "=" xảy ra khi : \(x-3=0\Leftrightarrow x=3\)
Vậy \(A_{Min}=2\Leftrightarrow x=3\)
b) \(B=x^2-20x+101\)
\(B=\left(x^2-20x+100\right)+1\)
\(B=\left(x-10\right)^2+1\)
Mà \(\left(x-10\right)^2\ge0\)
\(\Rightarrow B\ge1\)
Dấu "=" xảy ra khi : \(x-10=0\Leftrightarrow x=10\)
Vậy \(B_{Min}=1\Leftrightarrow x=10\)
c) \(C=x^2-4xy+5y^2+10x-22y+28\)
\(C=\left(x^2-4xy+4y^2\right)+y^2+10x-22y+28\)
\(C=\left[\left(x-2y\right)^2+2\left(x-2y\right).5+25\right]+\)\(\left(y^2-2y+1\right)+2\)
\(C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\)
Mà \(\left(x-2y+5\right)^2\ge0\)
\(\left(y-1\right)^2\ge0\)
\(\Rightarrow C\ge2\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
Vây \(C_{Min}=2\Leftrightarrow\left(x;y\right)=\left(-3;1\right)\)
a) Ta có A = x2 - 2x - 1 = (x2 - 2x + 1) - 2 = (x - 1)2 - 2 \(\ge\) -2
Dấu "=" xảy ra <=> x - 1 = 0 => x = 1
Vậy Min A = -2 <=> x = 1
b) Ta có B = 4x2 + 4x + 8 = (4x2 + 4x + 1) + 7 = (2x + 1)2 + 7 \(\ge\)7
Dấu |"=" xảy ra <=> 2x + 1 = 0 => x = -1/2
Vậy Min B = 7 <=> x = -1/2
c) Ta có C = 3x - x2 + 2
= -(x2 - 3x - 2)
= -(x2 - 3x + 9/4 - 9/4 - 2)
= -[(x - 3/2)2 - 17/4)
= -(x - 3/2)2 + 17/4 \(\le\frac{17}{4}\)
Dấu "=" xảy ra <=> x - 3/2 = 0 => x = 3/2
Vậy Max C = 17/4 <=> x = 3/2
d) Ta có D = -x2 - 5x = -(x2 + 5x) = -(x2 + 5x + 25/4 - 25/4) = -(x + 5/2)2 + 25/4 \(\ge\frac{25}{4}\)
Dấu "=" xảy ra <=> x + 5/2 = 0 => x = -5/2
Vậy Max D = 25/4 <=> x = -5/2
e) Ta có E = x2 - 4xy + 5y2 + 10x - 22y + 28
= (x2 - 4xy + 4y2) + 10x - 20y + y2 - 2y + 28
= (x - 2y)2 + 10(x - 2y) + 25 + (y2 - 2y + 1) + 2
= (x - 2y + 5) + (y - 1)2 + 2 \(\ge\)2
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
Vậy Min E = 2 <=> x = -3 ; y = 1
Lời giải:
Ta có:
\(A=3-(10x^2+4xy+4y^2)=3-[9x^2+(x^2+4xy+4y^2)]\)
\(=3-[(3x)^2+(x+2y)^2]\)
Vì \((3x)^2\geq 0; (x+2y)^2\geq 0\Rightarrow (3x)^2+(x+2y)^2\geq 0, \forall x,y\)
\(\Rightarrow A=3-[(3x)^2+(x+2y)^2]\leq 3\)
Vậy $A_{\max}=3$. Dấu "=" xảy ra khi \((3x)^2=(2x+y)^2=0\Rightarrow x=y=0\)