Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(A=\frac{1}{2\sqrt{x}-2}-\frac{1}{2\sqrt{x}+2}+\frac{\sqrt{x}}{1-x}\\ A=\frac{1}{2\left(\sqrt{x}-1\right)}-\frac{1}{2\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\\ A=\frac{\left(\sqrt{x}+1\right)-\left(\sqrt{x}-1\right)-2\sqrt{x}}{2\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\\ A=\frac{1}{\sqrt{x}+1}\)
ĐKXĐ: ...
\(A=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{x+2-x-\sqrt{x}-1+x-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)
\(x=28-6\sqrt{3}=\left(3\sqrt{3}-1\right)^2\Rightarrow\sqrt{x}=3\sqrt{3}-1\)
\(\Rightarrow A=\frac{3\sqrt{3}-1}{28-6\sqrt{3}+3\sqrt{3}-1+1}=\frac{3\sqrt{3}-1}{28-3\sqrt{3}}\)
\(x+\sqrt{x}+1=\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}>0\Rightarrow A\ge0\)
\(\Rightarrow\left|A\right|=A\)
By AM-GM's ine we have:
\(A=\left|x\right|\sqrt{1-x^2}\le\frac{x^2+1-x^2}{2}=\frac{1}{2}\)
Khi \(x=\pm\frac{1}{\sqrt{2}}\)
Sao lại thế vậy bạn