Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(A=\frac{1}{2\sqrt{x}-2}-\frac{1}{2\sqrt{x}+2}+\frac{\sqrt{x}}{1-x}\\ A=\frac{1}{2\left(\sqrt{x}-1\right)}-\frac{1}{2\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\\ A=\frac{\left(\sqrt{x}+1\right)-\left(\sqrt{x}-1\right)-2\sqrt{x}}{2\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\\ A=\frac{1}{\sqrt{x}+1}\)
ĐKXĐ: ...
\(A=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{x+2-x-\sqrt{x}-1+x-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)
\(x=28-6\sqrt{3}=\left(3\sqrt{3}-1\right)^2\Rightarrow\sqrt{x}=3\sqrt{3}-1\)
\(\Rightarrow A=\frac{3\sqrt{3}-1}{28-6\sqrt{3}+3\sqrt{3}-1+1}=\frac{3\sqrt{3}-1}{28-3\sqrt{3}}\)
\(x+\sqrt{x}+1=\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}>0\Rightarrow A\ge0\)
\(\Rightarrow\left|A\right|=A\)
a) \(P=\left[\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-\left(3x+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]:\left[\frac{\left(2\sqrt{x}-2\right)-\left(\sqrt{x}-3\right)}{\sqrt{x}-3}\right]\left(ĐK:x\ge0;x\ne9\right)\)
\(=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\frac{-3\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\frac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\frac{-3}{\sqrt{x}+3}\)
Câu a :
Đặt \(A=x+\sqrt{2-x^2}\) .
A đạt MIN khi\(x+\sqrt{2-x^2}\)đạt MIN tương đương \(\sqrt{2-x^2}\) đạt MIN .
Do \(\sqrt{2-x^2}\ge0\Leftrightarrow x=\pm\sqrt{2}\)
Vậy MIN A sẽ là \(-\sqrt{2}\) khi \(x=-\sqrt{2}\)
Câu b :
Vì \(\left\{{}\begin{matrix}\sqrt{x-2}\ge0\\\sqrt{4-x}\ge0\end{matrix}\right.\) . Nên áp dụng BĐT \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) ta có :
\(\sqrt{x-2}+\sqrt{4-x}\ge\sqrt{x-2+4-x}=\sqrt{2}\)
Vậy GTNN của biểu thức là \(\sqrt{2}\) . Dấu \("="\) xảy ra khi :
\(\left[{}\begin{matrix}\sqrt{x-2}=0\\\sqrt{4-x}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
Wish you study well !!
By AM-GM's ine we have:
\(A=\left|x\right|\sqrt{1-x^2}\le\frac{x^2+1-x^2}{2}=\frac{1}{2}\)
Khi \(x=\pm\frac{1}{\sqrt{2}}\)
Sao lại thế vậy bạn