Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : x2 + 100x + 100
= x2 + 2.50.x + 2500 - 2400
= (x + 50)2 - 2400
Vì \(\left(x+50\right)^2\ge0\forall x\)
Nên : (x + 50)2 - 2400 \(\ge-2400\forall x\)
Vậy Amin = -2400 khi x = -50
a) \(A=2x^2+2x+3\)
\(A=2\left(x^2+x+\frac{3}{2}\right)\)
\(A=2\left[x^2+2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{5}{4}\right]\)
\(A=2\left[\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\right]\)
\(A=2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x+\frac{1}{2}=0\Leftrightarrow x=\frac{-1}{2}\)
b) Biến đổi mẫu thức :
\(3x^2+4x+15\)
\(=3\left(x^2+\frac{4}{3}x+5\right)\)
\(=3\left[x^2+2\cdot x\cdot\frac{2}{3}+\left(\frac{2}{3}\right)^2+\frac{41}{9}\right]\)
\(=3\left[\left(x+\frac{2}{3}\right)^2+\frac{41}{9}\right]\)
\(=3\left(x+\frac{2}{3}\right)^2+\frac{41}{3}\)
\(B=\frac{5}{3\left(x+\frac{2}{3}\right)^2+\frac{41}{3}}\ge\frac{5}{\frac{41}{3}}=\frac{15}{41}\)
Dấu "=" xảy ra \(\Leftrightarrow x+\frac{2}{3}=0\Leftrightarrow x=\frac{-2}{3}\)
c) \(C=-x^2+2x-2\)
\(C=-\left(x^2-2x+2\right)\)
\(C=-\left(x^2-2\cdot x\cdot1+1^2+1\right)\)
\(C=-\left[\left(x-1\right)^2+1\right]\)
\(C=-1-\left(x-1\right)^2\le-1\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
d) Biến đổi mẫu thức tương tự câu b)
\(P=\frac{xy}{\left|xy\right|}+\frac{x-y}{\left|x-y\right|}\cdot\left(\frac{x}{\left|x\right|}-\frac{y}{\left|y\right|}\right)\)
TH1: \(x,y>0\)
+) Xét \(x>y\): \(P=\frac{xy}{xy}+\frac{x-y}{x-y}\cdot\left(\frac{x}{x}-\frac{y}{y}\right)=1+1\cdot\left(1-1\right)=1\)
+) Xét \(x< y\): \(P=\frac{xy}{xy}+\frac{x-y}{y-x}\cdot\left(\frac{x}{x}-\frac{y}{y}\right)=1+\left(-1\right)\cdot\left(1-1\right)=1\)
TH2: \(x,y< 0\)
+) Xét \(x>y\): \(P=\frac{xy}{xy}+\frac{x-y}{x-y}\cdot\left(\frac{x}{-x}-\frac{y}{-y}\right)=1+1\cdot\left[-1-\left(-1\right)\right]=1\)
+) Xét \(x< y\): \(P=\frac{xy}{xy}+\frac{x-y}{y-x}\cdot\left(\frac{x}{-x}-\frac{y}{-y}\right)=1\)
TH3: \(x>0;y< 0\): \(P=\frac{xy}{-xy}+\frac{x-y}{x-y}\cdot\left(\frac{x}{x}-\frac{y}{-y}\right)=-1+1\cdot\left(1+1\right)=1\)
TH4: \(x< 0;y>0\): \(P=\frac{xy}{-xy}+\frac{x-y}{y-x}\cdot\left(\frac{x}{-x}-\frac{y}{y}\right)=-1+\left(-1\right)\cdot\left(-1-1\right)=1\)
Nói chung với mọi x, y thì P = 1
\(A=x^2-8x+1=\left(x^2-8x+16\right)-15=\left(x+4\right)^2-15\)
Ta có \(\left(x+4\right)^2\ge0\Rightarrow\left(x+4\right)^2-15\le-15\)
\(\Rightarrow Max_A=-15\Leftrightarrow\left(x+4\right)^2-15=-15\)
\(\Leftrightarrow\left(x+4\right)^2=0\Leftrightarrow x=-4\)
a) ta có: A = x^2 - 8x + 1 = x^2 - 2.4.x + 16 - 15 = (x-4)^2 -15
=> giá trị nhỏ nhất của A = -15
b) ta có: B = 4 - x^2 + 4x = - (x^2 -4x + 4) + 8 = -(x-2)^2 +8
=> giá trị lớn nhất của B = 8
c) ta có: C = 3x^2 - 2x + 1
\(^2\ \)=> 3C =9 x^2 - 6x + 3
3C = 9x^2 - 2.3.x + 1 + 2
3C = (3x-1)^2 + 2
=> giá trị nhỏ nhất của 3C = 2 => giá trị nhỏ nhất của C = 2/3
a) Ta có: \(2x^2+2x+3=\left(\sqrt{2}x\right)^2+2.\sqrt{2}x.\frac{1}{\sqrt{2}}+\frac{1}{2}+\frac{5}{2}\)
\(=\left(\sqrt{2}x+\frac{1}{\sqrt{2}}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)
\(\Rightarrow S\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\)
Vậy \(S_{max}=\frac{6}{5}\Leftrightarrow\sqrt{2}x+\frac{1}{\sqrt{2}}=0\Leftrightarrow x=-\frac{1}{2}\)
b) Ta có: \(3x^2+4x+15=\left(\sqrt{3}x\right)^2+2.\sqrt{3}x.\frac{2}{\sqrt{3}}+\frac{4}{3}+\frac{41}{3}\)
\(=\left(\sqrt{3}x+\frac{2}{\sqrt{3}}\right)^2+\frac{41}{3}\ge\frac{41}{3}\)
\(\Rightarrow T\le\frac{5}{\frac{41}{3}}=\frac{15}{41}\)
Vậy \(T_{max}=\frac{15}{41}\Leftrightarrow\sqrt{3}x+\frac{2}{\sqrt{3}}=0\Leftrightarrow x=\frac{-2}{3}\)
c) Ta có: \(-x^2+2x-2=-\left(x^2-2x+1\right)-1\)
\(=-\left(x-1\right)^2-1\le-1\)
\(\Rightarrow V\ge\frac{1}{-1}=-1\)
Vậy \(V_{min}=-1\Leftrightarrow x-1=0\Leftrightarrow x=1\)
d) Ta có: \(-4x^2+8x-5=-\left(4x^2-8x+5\right)\)
\(=-\left(4x^2-8x+4\right)-1\)
\(=-\left(2x-2\right)^2-1\le-1\)
\(\Rightarrow X\ge\frac{2}{-1}=-2\)
Vậy \(X_{min}=-2\Leftrightarrow2x-2=0\Leftrightarrow x=1\)
1. D = 3( x2 - 2x.1/3 + 1/9) -1/3 +1
GTNN D = 5/6
dài quá, nản quá
\(A=x^2-3x+5\)
\(=x^2-3x+\frac{9}{4}+\frac{11}{4}\)
\(=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\)
\(\left(x-\frac{3}{2}\right)^2\ge0\Rightarrow A\ge\frac{11}{4}\)
Dấu "=" xảy ra khi \(x-\frac{3}{2}=0\Rightarrow x=\frac{3}{2}\)
Vậy Min A = \(\frac{11}{4}\Leftrightarrow x=\frac{3}{2}\)
a) \(A=x^2-3x+5\)
\("="\Leftrightarrow x=\frac{11}{4}\Rightarrow x=\frac{3}{2};\frac{11}{4}\)
b) \(B=\left(2x-1\right)^2+\left(x+2\right)^2\)
\("="\Leftrightarrow x=5\Rightarrow x=0;5\)
c) \(C=4x-x^2+3\)
\("="\Leftrightarrow x=7\Rightarrow x=2;7\)
d) \(D=x^4+x^2+2\)
\("="\Leftrightarrow x=2\Rightarrow x=0;2\)
b/ \(3-100x+8x^2=8x^2+x-300\)
\(\Leftrightarrow-101x=-303\)
\(\Rightarrow x=3\)
c/ \(5\left(5x+2\right)-10\left(8x-1\right)=6\left(4x+2\right)-150\)
\(\Leftrightarrow25x+10-80x+10=24x+12-150\)
\(\Leftrightarrow-79x=-158\)
\(\Rightarrow x=2\)
d/ \(3\left(3x+2\right)-\left(3x+1\right)=12x+10\)
\(\Leftrightarrow9x+6-3x-1=12x+10\)
\(\Leftrightarrow-6x=5\)
\(\Rightarrow x=-\frac{5}{6}\)
e/ \(30x-6\left(2x-5\right)+5\left(x+8\right)=210+10\left(x-1\right)\)
\(\Leftrightarrow30x-12x+30+5x+40=210+10x-10\)
\(\Leftrightarrow13x=130\)
\(\Rightarrow x=10\)
\(A=x^2-4x+1=\left(x-2\right)^2-3\ge-3\)
\(\Rightarrow A_{min}=-3\) khi \(x=2\)
\(B=4x^2+4x+11=\left(2x+1\right)^2+10\ge10\)
\(\Rightarrow B_{min}=10\) khi \(x=-\frac{1}{2}\)
\(C=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-36\ge-36\)
\(\Rightarrow C_{min}=-36\) khi \(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
\(D=-x^2-8x-16+21=21-\left(x+4\right)^2\le21\)
\(\Rightarrow C_{max}=21\) khi \(x=-4\)
\(E=-x^2+4x-4+5=5-\left(x-2\right)^2\le5\)
\(\Rightarrow E_{max}=5\) khi \(x=2\)
a ) \(A=3x^2+5x-2\)
\(=3\left(x^2+\dfrac{5}{3}x-\dfrac{2}{3}\right)\)
\(=3\left(x^2+2x.\dfrac{5}{6}+\dfrac{25}{36}-\dfrac{49}{36}\right)\)
\(=3\left[\left(x+\dfrac{5}{6}\right)^2-\dfrac{49}{36}\right]\)
\(=3\left(x+\dfrac{5}{6}\right)^2-\dfrac{49}{12}\ge-\dfrac{49}{12}\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow x+\dfrac{5}{6}=0\Leftrightarrow x=-\dfrac{5}{6}\)
Vậy Min A là : \(-\dfrac{49}{12}\Leftrightarrow x=-\dfrac{5}{6}\)
b ) \(B=3x^2-4x+1\)
\(=3\left(x^2-\dfrac{4}{3}x+\dfrac{1}{3}\right)\)
\(=3\left(x^2-2x.\dfrac{2}{3}+\dfrac{4}{9}-\dfrac{1}{9}\right)\)
\(=3\left[\left(x-\dfrac{2}{3}\right)^2-\dfrac{1}{9}\right]\)
\(=3\left(x-\dfrac{2}{3}\right)^2-\dfrac{1}{3}\ge-\dfrac{1}{3}\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow x-\dfrac{2}{3}=0\Leftrightarrow x=\dfrac{2}{3}\)
Vậy Min B là : \(-\dfrac{1}{3}\Leftrightarrow x=\dfrac{2}{3}\)
c ) \(C=-x^2-3x-2\)
\(=-\left(x^2+3x+2\right)\)
\(=-\left(x^2+2x.\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{1}{4}\right)\)
\(=-\left[\left(x+\dfrac{3}{2}\right)^2-\dfrac{1}{4}\right]\)
\(=-\left(x+\dfrac{3}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow x+\dfrac{3}{2}=0\Leftrightarrow x=-\dfrac{3}{2}\)
Vậy Max C là : \(\dfrac{1}{4}\Leftrightarrow x=-\dfrac{3}{2}\)
d ) \(D=-4-3x^2+2x\)
\(=-3\left(x^2-\dfrac{2}{3}x+\dfrac{4}{3}\right)\)
\(=-3\left(x^2-2x.\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{11}{9}\right)\)
\(=-3\left[\left(x-\dfrac{1}{3}\right)^2+\dfrac{11}{9}\right]\)
\(=-3\left(x-\dfrac{1}{3}\right)^2-\dfrac{11}{3}\le-\dfrac{11}{3}\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow x-\dfrac{1}{3}=0\Leftrightarrow x=\dfrac{1}{3}\)
Vậy Max D là : \(-\dfrac{11}{3}\Leftrightarrow x=\dfrac{1}{3}\)
:D
A=3x2+5x-2=2x2+4x+2+x2 -4=2(x+1)2 +x2-4 >=-4
Vậy A min=-4
B=3x2-4x+1=2x2-4x+2+x2-1=2(x-1)2+x2-1>=-1
Vậy B min=-1
C=-x2-3x -2=-(x2+3x+2)=-(x2+2x.3/2+9/4-1/4)=-(x+3/2)2+1/4
Ta có -(x+3/2)2<=0
=>-(x+3/2)2+1/4<=1/4
=> C max=1/4
D=-4-3x2+2x=-3x2+2x-4=-3(x2-2x/3+4/3)
=-3(x2-2x.1/3+1/9+11/9)=-3(x-1/3)2-11/3
Ta có -3(x-1/3)2<=0
=>-3(x-1/3)2-11/3<=-11/3
Vậy D max=-11/3