K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2022

Điều kiện: \(x\ge0\)

+ Nếu \(\sqrt{x}-4>0\Leftrightarrow\sqrt{x}>4\Leftrightarrow x>16\)

\(A\Leftrightarrow\sqrt{x}-2< \sqrt{x}-4\Leftrightarrow-2< -4\) (vô lý)

+ Nếu \(\sqrt{x}-4< 0\Leftrightarrow x< 16\)

\(A\Leftrightarrow\sqrt{x}-2>\sqrt{x}-4\Leftrightarrow-2>-4\forall x\)

=> A đúng với mọi x<16

18 tháng 5 2018

a) Ta có:

\(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(=\left(\frac{2\sqrt{x}\left(\sqrt{x-3}\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x-3}\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{3x+3}{x-9}\right):\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)

\(=\left(\frac{2x-6}{x-9}+\frac{x+3\sqrt{x}}{x-9}-\frac{3x+3}{x-9}\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\frac{2x-6+x+3\sqrt{x}-3x-3}{x-9}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\frac{3\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+3}\)

\(=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+3}\)

\(=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)^2}\)

b) \(P< \frac{-1}{2}\Rightarrow\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)^2}< \frac{-1}{2}\)

.....Chưa nghĩ ra....

c) Ta có: \(\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)^2}\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}-3=0\Rightarrow x=9\)

Vậy Min P = 0 khi x =9.

k - kb với tớ nhia mn!

13 tháng 9 2019

\(B=\frac{x-1-4\sqrt{x}+\sqrt{x}+1}{x-1}.\frac{x-1}{x-2\sqrt{x}}\)

\(=\frac{x-3\sqrt{x}}{x-2\sqrt{x}}\)

\(=\frac{\sqrt{x}-3}{\sqrt{x}-2}\)

a.Ta co:

\(\frac{\sqrt{x}-3}{\sqrt{x}-2}< 1\left(x\ge0,x\ne4\right)\) 

\(\Leftrightarrow\sqrt{x}-3< \sqrt{x}-2\)

\(\Leftrightarrow3>2\)

Vay \(B< 1\left(\forall x\ge0,x\ne4\right)\)

Lát mình giải 2 câu kia,di ăn com cái

13 tháng 9 2019

b.Ta co:

\(\frac{\sqrt{x}-3}{\sqrt{x}-2}< \frac{3}{2}\)

\(\Leftrightarrow2\sqrt{x}-6< 3\sqrt{x}-6\)

\(\Leftrightarrow x>0\)

Vay \(B< \frac{3}{2}\left(\forall x>0,x\ne4\right)\)

c.Ta co:

\(\frac{\sqrt{x}-3}{\sqrt{x}-2}>\sqrt{x}-1\)

\(\Leftrightarrow\sqrt{x}-3>x-3\sqrt{x}+2\)

\(\Leftrightarrow x-4\sqrt{x}+5< 0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+1< 0\) (vo ly)

Vay khong co gia tri nao cua x thoa man \(B>\sqrt{x}-1\)

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)a) Rút gọn biểu thức Ab) Tính giá trị của A khi x=9c) Tìm x để A=5d) Tìm x để A<1e) Tìm giá trị nguyên của x để A nhận giá trị nguyên2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)a) Tính giá trị biểu thức P khi x...
Đọc tiếp

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)

a) Rút gọn biểu thức A

b) Tính giá trị của A khi x=9

c) Tìm x để A=5

d) Tìm x để A<1

e) Tìm giá trị nguyên của x để A nhận giá trị nguyên

2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)

b) Rút gọn biểu thức A

c) So sánh giá trị biểu thức A với 1

d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)

 

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)

a) Rút gọn biểu thức A

b) Tính giá trị của A khi x=9

c) Tìm x để A=5

d) Tìm x để A<1

e) Tìm giá trị nguyên của x để A nhận giá trị nguyên

2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)

b) Rút gọn biểu thức A

c) So sánh giá trị biểu thức A với 1

d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)

 

 

0
27 tháng 11 2018

\(Q=\frac{\sqrt{x}\cdot\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\cdot\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(Q=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(Q=x+1\)

Không thể tìm được GTLN hay GTNN của Q.

b)

   \(\frac{3x+3}{\sqrt{x}}=3\sqrt{x}+\frac{3}{\sqrt{x}}\)

Để \(\frac{3Q}{\sqrt{x}}\) nguyên thì \(\frac{3}{\sqrt{x}}\)nguyên hay \(\sqrt{x}\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Vì \(\sqrt{x}\)dương nên \(\sqrt{x}\in\left\{1;3\right\}\)

Vậy x=1, x=9 là các giá trị cần tìm

24 tháng 5 2018

a)  ĐKXĐ : x > 0  ,  x  khác 1

b)Rút gọn

P = 6+ căn x trên căn x + 1

25 tháng 5 2018

bạn làm chi tiết đc k tại mình làm mà sao kết quả nó sai

17 tháng 10 2020

ĐKXĐ : x > 0 ; x ≠ 1 ; x ≠ 4

a) \(A=\left(1-\frac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{1}{\sqrt{x-1}}\right)\div\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\left(\frac{x-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\div\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\left(\frac{x-1-4\sqrt{x}+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\div\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{x-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\times\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}-3}{\sqrt{x}-2}\)

b) Với x = \(11-6\sqrt{2}\)

\(A=\frac{\sqrt{11-6\sqrt{2}}-3}{\sqrt{11-6\sqrt{2}}-2}\)

\(=\frac{\sqrt{2-6\sqrt{2}+9}-3}{\sqrt{2-6\sqrt{2}+9}-2}\)

\(=\frac{\sqrt{\left(\sqrt{2}\right)^2-2\cdot\sqrt{2}\cdot3+3^2}-3}{\sqrt{\left(\sqrt{2}\right)^2-2\cdot\sqrt{2}\cdot3+3^2}-2}\)

\(=\frac{\sqrt{\left(\sqrt{2}-3\right)^2}-3}{\sqrt{\left(\sqrt{2}-3\right)^2}-2}\)

\(=\frac{\left|\sqrt{2}-3\right|-3}{\left|\sqrt{2}-3\right|-2}\)

\(=\frac{3-\sqrt{2}-3}{3-\sqrt{2}-2}=\frac{-\sqrt{2}}{1-\sqrt{2}}\)

c) Ta có : \(A=\frac{\sqrt{x}-3}{\sqrt{x}-2}=\frac{\sqrt{x}-2-1}{\sqrt{x}-2}=1-\frac{1}{\sqrt{x}-2}\)

Để A nguyên => \(\frac{1}{\sqrt{x}-2}\)nguyên

=> \(1⋮\sqrt{x}-2\)

=> \(\sqrt{x}-2\inƯ\left(1\right)=\left\{\pm1\right\}\)

=> \(\sqrt{x}\in\left\{3;1\right\}\)

=> \(x=9\)( không nhận x = 1 do ĐKXĐ )

d) Để A = -2

=> \(\frac{\sqrt{x}-3}{\sqrt{x}-2}=-2\)( x > 0 ; x ≠ 1 ; x ≠ 4 )

=> \(\sqrt{x}-3=-2\sqrt{x}+4\)

=> \(\sqrt{x}+2\sqrt{x}=4+3\)

=> \(3\sqrt{x}=7\)

=> \(9x=49\)( bình phương hai vế )

=> \(x=\frac{49}{9}\)( tm )

e) Để A có giá trị âm

=> \(\frac{\sqrt{x}-3}{\sqrt{x}-2}< 0\)

Xét hai trường hợp :

1.\(\hept{\begin{cases}\sqrt{x}-3>0\\\sqrt{x}-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x}>3\\\sqrt{x}< 2\end{cases}}\Leftrightarrow\hept{\begin{cases}x>9\\x< 4\end{cases}}\)( loại )

2. \(\hept{\begin{cases}\sqrt{x}-3< 0\\\sqrt{x}-2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x}< 3\\\sqrt{x}>2\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 9\\x>4\end{cases}}\Leftrightarrow4< x< 9\)

Vậy với 4 < x < 9 thì A có giá trị âm

f) Để A < -2

=> \(\frac{\sqrt{x}-3}{\sqrt{x}-2}< -2\)

=> \(\frac{\sqrt{x}-3}{\sqrt{x}-2}+2< 0\)

=> \(\frac{\sqrt{x}-3}{\sqrt{x}-2}+\frac{2\sqrt{x}-4}{\sqrt{x-2}}< 0\)

=> \(\frac{3\sqrt{x}-7}{\sqrt{x}-2}< 0\)

Xét hai trường hợp :

1. \(\hept{\begin{cases}3\sqrt{x}-7< 0\\\sqrt{x}-2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}3\sqrt{x}< 7\\\sqrt{x}>2\end{cases}}\Leftrightarrow\hept{\begin{cases}9x< 49\\x>4\end{cases}}\Leftrightarrow\hept{\begin{cases}x< \frac{49}{9}\\x>4\end{cases}}\Leftrightarrow4< x< \frac{49}{9}\)

2. \(\hept{\begin{cases}3\sqrt{x}-7>0\\\sqrt{x}-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}3\sqrt{x}>7\\\sqrt{x}< 2\end{cases}}\Leftrightarrow\hept{\begin{cases}9x>49\\x< 4\end{cases}}\Leftrightarrow\hept{\begin{cases}x>\frac{49}{9}\\x< 4\end{cases}}\)( loại )

Vậy với 4 < x < 49/9 thì A < -2

g) Để \(A>\sqrt{x}-1\)

=> \(\frac{\sqrt{x}-3}{\sqrt{x}-2}>\sqrt{x}-1\)

=> \(\frac{\sqrt{x}-3}{\sqrt{x}-2}-\left(\sqrt{x}-1\right)>0\)

=> \(\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\sqrt{x}-2}>0\)

=> \(\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{x-3\sqrt{x}+2}{\sqrt{x}-2}>0\)

=> \(\frac{-x+4\sqrt{x}-5}{\sqrt{x}-2}>0\)

Ta có : \(-x+4\sqrt{x}-5=-\left(x-4\sqrt{x}+4\right)-1=-\left(\sqrt{x}-2\right)^2-1\le-1< 0\left(\forall\ge0\right)\)

Nên để A > 0 thì ta chỉ cần xét \(\sqrt{x}-2< 0\)

\(\sqrt{x}-2< 0\Leftrightarrow\sqrt{x}< 2\Leftrightarrow x< 4\)

Kết hợp với ĐKXĐ => \(\hept{\begin{cases}0< x< 4\\x\ne1\end{cases}}\)thì tm