K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2020

Từ giả thiếu suy ra: (x2+y2)2-4(x2+y2)+3=-x2 =<0

Do đó: A2-4A+3 =<0

<=> (A-1)(A-3) =<0 

<=> 1 =<A=<3

Vậy MinA=1 <=> x=0; y=\(\pm\)1

       MaxA=3 <=> x=0; y=\(\pm\sqrt{3}\)

1 tháng 9 2018

b,Ap dung bdt cauchy schwarz dang engel ta co

\(B=\frac{x^2}{1}+\frac{y^2}{1}+\frac{z^2}{1}>=\frac{\left(x+y+z\right)^2}{3}=\frac{a^2}{3}\)

xay ra dau = khi x=y=z=a/3

NV
10 tháng 5 2020

\(A=x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2=\frac{1}{2}\)

Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)

\(\left\{{}\begin{matrix}x;y\ge0\\x+y=1\end{matrix}\right.\) \(\Rightarrow0\le x;y\le1\)

\(\Rightarrow\left\{{}\begin{matrix}x^2\le x\\y^2\le y\end{matrix}\right.\) \(\Rightarrow A=x^2+y^2\le x+y=1\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(1;0\right);\left(0;1\right)\)

20 tháng 9 2019

khó quá đây là toán lớp mấy

19 tháng 9 2019

Bài 3:

Có:\(6=\frac{\left(\sqrt{2}\right)^2}{x}+\frac{\left(\sqrt{3}\right)^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)

True?

19 tháng 8 2016
A^2 = x + y - 3 + 2√[(x - 2)(y - 3)] <= 1 + (x + y - 3) = 2 vậy A max là √2 khi x = 1,5; y = 2,5
19 tháng 8 2016
Hai cái còn lại làm tương tự