K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2021

\(A=x^2-4x+10=x^2-4x+4+6=\left(x-2\right)^2+6\ge6\)

Vậy GTNN A là 6 khi x - 2 = 0 <=> x = 2 

\(B=\left(1-x\right)\left(3x-4\right)=3x-4-3x^2+4x=-3x^2+7x-4\)

\(=-3\left(x^2-\frac{7}{3}x+\frac{4}{3}\right)=-3\left(x^2-2.\frac{7}{6}x+\frac{49}{36}-\frac{1}{36}\right)=-3\left(x-\frac{7}{6}\right)^2+\frac{1}{12}\ge\frac{1}{12}\)

\(=3\left(x-\frac{7}{6}\right)^2-\frac{1}{12}\le-\frac{1}{12}\)Vậy GTLN B là -1/12 khi x = 7/6 

3 tháng 5 2021

\(C=3x^2-9x+5=3\left(x^2-3x+\frac{5}{3}\right)=3\left(x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{7}{12}\right)\)

\(=3\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\ge-\frac{7}{4}\)Vậy GTNN C là -7/4 khi x = 3/2 

\(D=-2x^2+5x+2=-2\left(x^2-\frac{5}{2}x-1\right)=-2\left(x^2-2.\frac{5}{4}x+\frac{25}{16}-\frac{41}{16}\right)\)

\(=-2\left(x-\frac{5}{4}\right)^2+\frac{21}{8}\le\frac{21}{8}\)Vậy GTLN D là 21/8 khi x = 5/4 

10 tháng 3 2022

A= 3x2 - 2x + 3

= 3(x2- 2/3x + 1/9 ) + 8/3

= 3(x-1/3)2 + 8/3 > 8/3 \(\forall\)x

dấu ''='' xảy ra <=> x = 1/3

/HT\

10 tháng 3 2022

Nhầm đề rồi mấy bạn trả lời

Bảo là giá trị nguyên của ,\(\frac{2x-3}{3x+2}\) , các bạn ghi là \(3x^2-2x+3\)rồi

HT

26 tháng 4 2016

Nhỏ nhất Là 1

Lớn nhất là 8

9 tháng 7 2016

\(b,B\left(x\right)=x\left(x-3\right)-2\left(x+5\right)=x^2-3x-2x-10=x^2-5x-10\)

\(=x^2-\frac{5}{2}x-\frac{5}{2}x+\frac{25}{4}-\frac{25}{4}-10=x\left(x-\frac{5}{2}\right)-\frac{5}{2}\left(x-\frac{5}{2}\right)-\frac{65}{4}\)

\(=\left(x-\frac{5}{2}\right)^2-\frac{65}{4}\)

\(\left(x-\frac{5}{2}\right)^2\ge0=>\left(x-\frac{5}{2}\right)^2-\frac{65}{4}\ge-\frac{65}{4}\) (với mọi x)

Dấu "=" xảy ra \(< =>x-\frac{5}{2}=0< =>x=\frac{5}{2}\)

Vậy minB(x)=-65/4 khi x=5/2

\(c,C\left(x\right)=2x\left(x+1\right)-3x\left(x+1\right)=2x^2+2x-3x^2-3x=-x^2-x\)

\(=-\left(x^2+x\right)=-\left(x^2+x+1-1\right)=-\left(x^2+\frac{1}{2}x+\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}-1\right)\)

\(=-\left[x\left(x+\frac{1}{2}\right)+\frac{1}{2}\left(x+\frac{1}{2}\right)-\frac{1}{4}\right]=-\left[\left(x+\frac{1}{2}\right)^2-\frac{1}{4}\right]=\frac{1}{4}-\left(x+\frac{1}{2}\right)^2\)

\(\left(x+\frac{1}{2}\right)^2\ge0=>\frac{1}{4}-\left(x+\frac{1}{2}\right)^2\le\frac{1}{4}\) (với mọi x)

Dấu  "=" xảy ra \(< =>x+\frac{1}{2}=0< =>x=-\frac{1}{2}\)

Vậy maxC(x)=1/4 khi x=-1/2

9 tháng 7 2016

\(A\left(x\right)=2x\left(x-1\right)-3\left(x-13\right)=2x^2-5x+39\)

\(=2\left(x^2-\frac{5}{2}x+\frac{39}{2}\right)=2\left(x^2-\frac{5}{4}x-\frac{5}{4}x+\frac{25}{16}-\frac{25}{16}+\frac{39}{2}\right)\)

\(=2\left[x\left(x-\frac{5}{4}\right)-\frac{5}{4}\left(x-\frac{5}{4}\right)\right]+\frac{287}{16}=2\left[\left(x-\frac{5}{4}\right)^2+\frac{287}{16}\right]=2\left(x-\frac{5}{4}\right)^2+\frac{287}{8}\)

\(2\left(x-\frac{5}{4}\right)^2\ge0=>2\left(x-\frac{5}{4}\right)^2+\frac{287}{8}\ge\frac{287}{8}>0\) với mọi x

=>A(x) vô nghiệm (đpcm)

27 tháng 8 2019

\(C=4,5\cdot\left|2x-0,5\right|-0,25\)

Do \(\left|2x-0,5\right|\ge0\)

=> \(C=4,5\cdot\left|2x-0,5\right|-0,25\ge-0,25\)

Dấu bằng xảy ra khi và chỉ khi \(\left|2x-0,5\right|=0\)hay \(\left|2x-\frac{1}{2}\right|=0\)=> \(2x=\frac{1}{2}\)=> \(x=\frac{1}{2}:2=\frac{1}{4}\)

Vậy Cmin = -1/4 khi x = 1/4

\(D=-\left|3x+4,5\right|+0,75\)

Do \(\left|3x+4,5\right|\ge0\)

=> \(-\left|3x+4,5\right|\le0\)

=> \(D=-\left|3x+4,5\right|+0,75\le0,75\)

Dấu bằng xảy ra khi và chỉ khi \(\left|3x+4,5\right|=0\)=> \(\left|3x+\frac{9}{2}\right|=0\)=> \(3x=-\frac{9}{2}\)=> x = \(-\frac{9}{2}:3=\frac{-9}{6}=\frac{-3}{2}\)

Vậy Dmax = 0,75 khi x = -3/2

\(E=\left|x-2005\right|+\left|x-2004\right|\)

\(=\left|x-2005\right|+\left|2004-x\right|\)

\(\ge\left|x-2005+2004-x\right|=\left|-1\right|=1\)

Vậy \(E\ge1\), E đạt giá trị nhỏ nhất là 1 khi \(2004\le x\le2005\)

23 tháng 10 2015

a, Để A có GTNN thì |2.x-1/3| phải có GTNN 

\(\Rightarrow\)|2.x-1/3|=0 \(\Leftrightarrow\)x=1/6

​A có GTNN =107 khi x=1/6

b,(3x-5)^20 với mọi x 

Để A có GTNN ​(3x-5)^2 phải có GTNN 

\(\Rightarrow\)(3x-5)^2=0 \(\Leftrightarrow\)x=5/3

B co GTNN =-2015 khi x=5/3

​c,Để C có GTLN khi |2x-3| phải có GTNN 

\(\Rightarrow\)|2X-3|=0 \(\Leftrightarrow\)X=1,5

C co GTLN =1 khi x=1,5

đ,(4-2x)^2 ​0 với mọi x

Để D có GTLN khi (4-2x)^2 phải có GTNN 

\(\Rightarrow\)(4-2x)^2=0 \(\Leftrightarrow\)x=2

​D có GTLN =2016 khi x=2


 

15 tháng 2 2018

\(P=x^4+2x^3+3x^2+2x+1\)

\(=\left(x^4+2x^2+1\right)+\left(2x^3+2x\right)+x^2\)

\(=\left(x^2+1\right)^2+2x\left(x^2+1\right)+x^2\)

\(=\left(x^2+x+1\right)^2\)

15 tháng 2 2018

giải tiếp : 

Vì \(x^2+x+1=\left(x^2+2x.\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}\)

                            \(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Nên  \(P\ge\left(\frac{3}{4}\right)^2=\frac{9}{16}\)

Dấu "=" xảy ra khi và chỉ khi  \(x=-\frac{1}{2}\)