Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A-B=x^4-x^2+3=\left(x^2-\frac{1}{2}\right)^2+3-\frac{1}{4}\)
GTLN không có (muốn có thêm DK cho x)
GTNN=3-1/4=11/4 khi \(x=+-\frac{\sqrt{2}}{2}\)
A=a^3+b^3=a^2+b^2-ab+ab=a^2+b^2
thay a=1-b vào biểu thức trên ta có:
A=(1-b)^2+b^2=1-2b+2b^2=2(b2-b+0,5)=2(b2-2x0,5xb+0,25+0,25)=2(b-0,5)2+0,5
=>Amin =0.5<=>a=b=0,5
tick nha!
đặt y = 1/x suy ra y <=1,
ta có P = 1 -2y+2016y^2
Tự làm tiếp nhé
\(B=\frac{x^2-2x+2018}{x^2}\)
\(\Rightarrow B=\frac{x^2}{x^2}-\frac{2x}{x^2}+\frac{2018}{x^2}\)
\(\Rightarrow B=1-\left(\frac{2}{x}-\frac{2018}{x^2}\right)\)
\(B=\frac{x^2-2x+2018}{x ^2}\)
\(\Rightarrow\)\(Bx^2=x^2-2x+2018\)
\(\Rightarrow\)\(\left(B-1\right)x^2+2x-2018=0\)
Để phương trình có nghiệm thì:
\(\Delta'=1-\left(B-1\right).\left(-2018\right)\)\(\ge0\)
\(\Leftrightarrow\)\(2018B-2017\ge0\)
\(\Leftrightarrow\) \(B\ge\frac{2017}{2018}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=\frac{-1}{B-1}=\frac{-1}{\frac{2017}{2018}-1}=2018\)
Vậy \(Min\)\(B=\frac{2017}{2018}\) \(\Leftrightarrow\)\(x=2018\)
p/s: tham khảo
\(A=x^2+4x+100\)
\(A=x^2+2.x.2+2^2+96\)
\(A=\left(x+2\right)^2+96\)
\(\left(x+2\right)^2+96\le0\)
\(\left(x+2\right)^2+96\le96\)
\(\Leftrightarrow A\le96\)
\(A_{min}\Leftrightarrow A=10\)
Dấu "=" xảy ra : \(\left(x+2\right)^20\)
\(x+2=0\)
\(x=-2\)
\(A=\frac{x+16}{\sqrt{x}+3}\)
\(A=\frac{x-4\sqrt{x}+4+4\sqrt{x}+12}{\sqrt{x}+3}\)
\(A=\frac{\left(\sqrt{x}-2\right)^2+4\left(\sqrt{x}+3\right)}{\sqrt{x}+3}\)
\(A=\frac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}+3}+\frac{4\left(\sqrt{x}+3\right)}{\sqrt{x}+3}\)
\(A=\frac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}+3}+4\ge4\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)
\(B+1=\frac{4x+3+x^2+1}{x^2+1}=\frac{\left(x+2\right)^2}{x^2+1}\ge0\Rightarrow B\ge-1\\ \)
GTNN B=-1 khi x=-2