Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt y = 1/x suy ra y <=1,
ta có P = 1 -2y+2016y^2
Tự làm tiếp nhé
\(B+1=\frac{4x+3+x^2+1}{x^2+1}=\frac{\left(x+2\right)^2}{x^2+1}\ge0\Rightarrow B\ge-1\\ \)
GTNN B=-1 khi x=-2
TXĐ: D=[-2,2]
P'=\(1-\frac{x}{\sqrt{4-x^2}}\)
P'=0<=> \(1-\frac{x}{\sqrt{4-x^2}}=0\)=>\(\hept{\begin{cases}x=\sqrt{4-x^2}\\4-x^2>0\end{cases}}\)
\(\hept{\begin{cases}x^2=4-x^2\\x\ge0\\-2< x< 2\end{cases}}\)
=> \(x=\sqrt{2}\)
P(-2)=-2
\(P\left(\sqrt{2}\right)=2\sqrt{2}\)
P(2)=2
Vậy GTLN của P=\(2\sqrt{2}\),GTNN là -2
Vì \(x^2\ge0\)
Mà x2\(\ne\)0
=> Để \(x^2+\frac{1}{x^2}+3\)nho nhat => x2=1+ .x= -1;1
=> \(x^2+\frac{1}{x^2}+3\)=1+1/1+3=1+1+3=5
=> Min \(x^2+\frac{1}{x^2}+3=5\)
A=\(A=\frac{1}{x^2}+\frac{1}{y^2}=\frac{x^2+y^2}{\left(xy\right)^2}=\frac{20}{\left(xy\right)^2}\) (1)
\(\left(x-y\right)^2\ge0\Rightarrow x^2+y^2\ge2xy\Rightarrow xy\le\frac{x^2+y^2}{2}=\frac{20}{2}=10\)(2)
từ (1) và (2) => \(A\ge\frac{20}{10^2}=\frac{1}{5}\)
\(A=\frac{x+16}{\sqrt{x}+3}\)
\(A=\frac{x-4\sqrt{x}+4+4\sqrt{x}+12}{\sqrt{x}+3}\)
\(A=\frac{\left(\sqrt{x}-2\right)^2+4\left(\sqrt{x}+3\right)}{\sqrt{x}+3}\)
\(A=\frac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}+3}+\frac{4\left(\sqrt{x}+3\right)}{\sqrt{x}+3}\)
\(A=\frac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}+3}+4\ge4\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)