Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(A=4x^2+4x+11\)
\(=4x^2+4x+1+10\)
\(=\left(2x+1\right)^2+10\ge10\)
Dấu = khi \(x=\frac{-1}{2}\)
Vậy MinA=10 khi \(x=\frac{-1}{2}\)
b)\(B=3x^2-6x+1\)
\(=3x^2-6x+3-2\)
\(=3\left(x^2-2x+1\right)-2\)
\(=3\left(x-1\right)^2-2\ge-2\)
Dấu = khi \(x=1\)
Vậy MinB=-2 khi \(x=1\)
c)\(C=x^2-2x+y^2-4y+6\)
\(=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\)
Dấu = khi \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Vậy MinC=1 khi \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
b) \(M=\frac{x^2+1}{x-1}=\frac{x^2-1}{x-1}+\frac{2}{x-1}=\frac{\left(x-1\right)\left(x+1\right)}{x-1}+\frac{2}{x-1}=x+1+\frac{2}{x-1}\)
Áp dụng bđt Cô si cho 2 số dương ta được: \(x-1+\frac{2}{x-1}\ge2\sqrt{\left(x-1\right).\frac{2}{x-1}}=2\sqrt{2}\)
=>\(M=x+1+\frac{2}{x-1}\ge2\sqrt{2}+2\)
Dấu "=" xảy ra khi \(x=\sqrt{2}+1\)
c) \(N=\left(x-1\right)\left(x+5\right)\left(x^2+4x+5\right)=\left(x^2+4x-5\right)\left(x^2+4x+5\right)=\left(x^2+4x\right)^2-25\)
\(\left(x^2+4x\right)^2\ge0\Rightarrow\left(x^2+4x\right)^2-25\ge-25\)
Dấu "=" xảy ra khi (x2+4x)2=0 <=> x2+4x=0 <=> x(x+4)=0 <=> x=0 hoặc x=-4
\(P=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left[\left(x+6\right)\left(x-1\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)
\(P=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-6^2.P_{min}\Leftrightarrow x^2+5xđạtGTNN\)
\(x^2+5x\ge0\Leftrightarrow x\left(x+5\right)\ge0\)
Dấu "=" xảy ra <=> \(x\in\left\{0;-5\right\}\)
Vậy: Pmin=-36 <=> x E {0;-5}
Bài 1:
a) \(M=x^2+x+1\)
\(=x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+1\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0;\forall x\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge0+\frac{3}{4};\forall x\)
Hay \(M\ge\frac{3}{4};\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x+\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy \(MIN\)\(M=\frac{3}{4}\)\(\Leftrightarrow x=\frac{-1}{2}\)
b) \(N=3-2x-x^2\)
\(=-x^2-2x+3\)
\(=-\left(x^2+2x+1\right)+4\)
\(=-\left(x+1\right)^2+4\)
Vì \(-\left(x+1\right)^2\le0;\forall x\)
\(\Rightarrow-\left(x+1\right)^2+4\le0+4;\forall x\)
Hay \(N\le4;\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy MAX \(N=4\)\(\Leftrightarrow x=-1\)
Bài 2:
Vì a chia 3 dư 1 nên a có dạng \(3k+1\left(k\in N\right)\)
Vì b chia 3 dư 2 nên b có dạng \(3t+2\left(t\in N\right)\)
Ta có: \(ab=\left(3k+1\right)\left(3t+2\right)\)
\(=\left(3k+1\right).3t+\left(3k+1\right).2\)
\(=9kt+3t+6k+2\)
\(=3.\left(3kt+t+2k\right)+2\)chia 3 dư 2 .
\(\)
1a) Ta có: M = x2 + x + 1 = (x2 + x + 1/4) + 3/4 = (x + 1/2)2 + 3/4
Ta luôn có: (x + 1/2)2 \(\ge\)0 \(\forall\)x
=> (x + 1/2)2 + 3/4 \(\ge\)3/4 \(\forall\)x
Dấu "=" xảy ra khi : x + 1/2 = 0 <=> x = -1/2
Vậy Mmin = 3/4 tại x = -1/2
b) Ta có: N = 3 - 2x - x2 = -(x2 + 2x + 1) + 4 = -(x + 1)2 + 4
Ta luôn có: -(x + 1)2 \(\le\)0 \(\forall\)x
=> -(x + 1)2 + 4 \(\le\)4 \(\forall\)x
Dấu "=" xảy ra khi : x + 1 = 0 <=> x = -1
Vậy Nmax = 4 tại x = -1
a) \(A=x^2+x+1\)
\(A=x^2+x+\frac{1}{4}+\frac{3}{4}\)
\(A=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Có: \(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu = xảy ra khi: \(\left(x+\frac{1}{2}\right)^2=0\Rightarrow x+\frac{1}{2}=0\Rightarrow x=-\frac{1}{2}\)
Vậy: \(Min_A=\frac{3}{4}\) tại \(x=-\frac{1}{2}\)
b) \(B=2+x-x^2\)
\(B=\frac{9}{4}-x^2+x-\frac{1}{4}\)
\(B=\frac{9}{4}-\left(x-\frac{1}{2}\right)^2\)
Có: \(\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\frac{9}{4}-\left(x-\frac{1}{2}\right)^2\le\frac{9}{4}\)
Dấu = xảy ra khi: \(\left(x-\frac{1}{2}\right)^2=0\Rightarrow x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)
Vậy: \(Max_B=\frac{9}{4}\) tại \(x=\frac{1}{2}\)
c) \(C=x^2-4x+1\)
\(C=x^2-4x+4-3\)
\(C=\left(x-2\right)^2-3\)
Có: \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2-3\ge-3\)
Dấu = xảy ra khi: \(\left(x-2\right)^2=0\Rightarrow x-2=0\Rightarrow x=2\)
Vậy: \(Min_C=-3\) tại \(x=2\)
Mấy bài kia tương tự, riêng bài g
g) \(G=h\left(h+1\right)\left(h+2\right)\left(h+3\right)\)
\(G=\left(h^2+3h\right)\left(h^2+3h+2\right)\)
Đặt: \(t=h^2+3h+1\)
\(\Leftrightarrow\hept{\begin{cases}h^2+3h=t-1\\h^2+3h+2=t+1\end{cases}}\)
\(\Leftrightarrow\left(h^2+3h\right)\left(h^2+3h+2\right)=\left(t-1\right)\left(t+1\right)=t^2-1=\left(h^2+3h+1\right)^2-1\)
Có: \(\left(h^2+3h+1\right)^2\ge0\Rightarrow\left(h^2+3h+1\right)^2-1\ge-1\)
Dấu = xảy ra khi: \(\left(h^2+3h+1\right)^2=0\Rightarrow h^2+3h+1=0\Rightarrow\left(h+\frac{3}{2}\right)^2-\frac{5}{4}=0\Rightarrow\orbr{\begin{cases}h=-\frac{\sqrt{5}}{2}-\frac{3}{2}\\h=\frac{\sqrt{5}}{2}-\frac{3}{2}\end{cases}}\)
Vậy: \(Min_G=-1\) tại \(\orbr{\begin{cases}h=-\frac{\sqrt{5}}{2}-\frac{3}{2}\\h=\frac{\sqrt{5}}{2}-\frac{3}{2}\end{cases}}\)
Ta có A = 2x2 + 12x + 1
= \(2\left(x^2+6x+\frac{1}{2}\right)=2\left(x^2+6x+9-\frac{17}{2}\right)=2\left(x+3\right)^2-17\ge-17\)
=> Min A = -17
Dấu "=" xảy ra <=> x + 3 = 0
<=> x = -3
Vậy Min A = -17 <=> x = -3
b) Ta có B = x2 + 3x + 2
= \(x^2+2.\frac{3}{2}x+\frac{9}{4}-\frac{1}{4}=\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
=> Min B = -1/4
Dấu "=" xảy ra <=> x + 3/2 = 0 <=> x = -3/2
Vậy Min B = -1/4 <=> x = -3/2