K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2017

a) Khi \(x< -17,\) ta có \(D=-x-5-x-17=-2x-22\)

Do \(x< -17\Rightarrow-2x-22>12\)

Khi \(-17\le x\le-5,\) \(D=-x-5+x+17=12\)

Khi \(x>-5,\) ta có \(D=x+5+x+17=2x+22\)

Do \(x>-5\Rightarrow2x+22>12\)

Vậy GTNN của D là 12, khi \(-17\le x\le-5.\)

Câu b em làm tương tự nhé.

28 tháng 6 2017

MK gợi ý thôi nha mk bận quá

Áp dụng công thức \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) là đc

28 tháng 6 2017

a/
Ta có
\(D=\left|x+5\right|+\left|x+17\right|\ge\left|x+5+x+17\right|\)
\(\Leftrightarrow D=\left|x+5\right|+\left|-x-17\right|\ge\left|x+5-x-17\right|\)
\(\Leftrightarrow D=\left|x+5\right|+\left|-x-17\right|\ge12\)
Vậy GTNN của D là 12 khi x=-5;x=-17
Câu b tương tự

20 tháng 12 2015

 

A= |x-5| +|x+17| = |5-x|+|x+17| >/ | 5-x +x+17| =22

 => Min A = 22 khi -17 </ x < / 5

B = ( |x+8| + |x+50| ) + |x+13|  = ( |-x-8|+|x+50| ) + |x+13|  >/  | -x-8 +x+50 | + 0 = 42

 Min B =42 khi x = -13

9 tháng 11 2016

Bài 1:

\(A=\left|x-3\right|+\left|x-5\right|+\left|x-7\right|\)

\(\ge x-3+0+7-x=4\)

Dấu = khi \(\begin{cases}x-3\ge0\\x-5=0\\7-x\le0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge3\\x=5\\x\le7\end{cases}\)\(\Leftrightarrow x=5\)

Vậy MinA=4 khi x=5

Bài 2:

\(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-5\right|\)

\(\ge x-1+x-2+3-x+5-x=5\)

Dấu = khi \(\begin{cases}x-1\ge0\\x-2\ge0\\3-x\ge0\\5-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\ge2\\x\le3\\x\le5\end{cases}\)\(\Leftrightarrow2\le x\le3\)

 

12 tháng 8 2016

Bài 1:

a)|x-2|=x-2

<=>x-2=-(x-2) hoặc (x-2)

  • Với x-2=-(x-2) 

=>x-2=-x+2

=>x=2

  • Với x-2=x-2.Ta thấy 2 vế cùng có số hạng giống nhau =>mọi \(x\in R\)đều thỏa mãn

b)|2x+3|=5x-1

=>2x+3=-(5x-1) hoặc 5x-1

  • Với 2x+3=-(5x-1)

​=>2x+3=-5x+1

=>x=-2/7 (loại)

  • Với 2x+3=5x-1

​=>x=4/3

Bài 2:

a)Ta thấy:\(\begin{cases}\left|x-2\right|\\\left|3+y\right|\end{cases}\ge0\)

\(\Rightarrow\left|x-2\right|+\left|3+y\right|\ge0\)

\(\Rightarrow A\ge0\)

Dấu = khi \(\begin{cases}\left|x-2\right|=0\\\left|3+y\right|=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=2\\y=-3\end{cases}\)

Vậy MinA=0 khi x=2; y=-3

b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) và dấu = khi \(ab\ge0\) ta có:

\(\left|x-2016\right|+\left|x-2017\right|\ge\left|x-2016+2017-x\right|=1\)

\(\Rightarrow B\ge1\)

Dấu = khi \(ab\ge0\)\(\Leftrightarrow\left(x-2016\right)\left(x-2017\right)\ge0\)\(\Leftrightarrow\begin{cases}\left(x-2016\right)\left(x-2017\right)\\2016\le x\le2017\end{cases}\)

\(\Leftrightarrow\begin{cases}x=2016\\x=2017\end{cases}\)

Vậy MinB=1 khi x=2016 hoặc 2017

 

 

12 tháng 8 2016

lần sau đăng ít thôi 

30 tháng 6 2016

1.a) |x - 3/2| + |2,5 - x| = 0

=> |x - 3/2| = 0 và |2,5 - x| = 0

=> x = 3/2 và x = 2,5 (Vô lý vì x không thể xảy ra 2 trường hợp trong cùng 1 biểu thức).

Vậy x rỗng.