K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2017

\(\left(x+1\right)^{2006}\ge0;\left(y-1\right)^{2008}\ge0\Rightarrow\left(x+1\right)^{2006}+\left(y-1\right)^{2008}\ge0\)

Dấu "=" xảy ra khi (x+1)2006=0;(y-1)2008=0 <=>x+1=0;y-1=0<=>x=-1;y=1

bạn thay vào A mà tính

30 tháng 6 2018

Bài 1:

\(\left(\frac{1}{4.9}+\frac{1}{9.14}+\frac{1}{14.19}+...+\frac{1}{44.49}\right).\frac{1-3-5-...-49}{89}\)

\(=\frac{1}{5}\left(\frac{5}{4.9}+\frac{5}{9.14}+\frac{5}{14.19}+...+\frac{5}{44.49}\right).-\left(\frac{3+5+7+...+49-1}{89}\right)\)

\(=\frac{1}{5}\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{44}-\frac{1}{49}\right).-\left(\frac{\left(49+3\right).24:2-1}{89}\right)\)(Do tổng có 24 số)

\(=\frac{1}{5}\left(\frac{1}{4}-\frac{1}{49}\right).-\left(\frac{52.12-1}{89}\right)\)

\(=\frac{1}{5}.\frac{45}{196}.\left(-7\right)=-\frac{9}{28}\)

Bài 2:

a) Ta có:

\(|2x+3|=x+2\)

<=> x + 2 >=0 và: \(\orbr{\begin{cases}2x+3=x+2\\2x+3=-x-2\end{cases}}\)

<=> x >= -2 và \(\orbr{\begin{cases}2x-x=2-3\\2x+x=-2-3\end{cases}}\)

<=> x >= -2 và \(\orbr{\begin{cases}x=-1\left(n\right)\\x=-\frac{5}{3}\left(n\right)\end{cases}}\)( n là viết tắt của "nhận" nha bạn)

Vậy x ={-1 ; -5/3}

Xin lỗi vì tớ ko thể lồng dấu \(\hept{\begin{cases}\\\end{cases}}\) và dấu \(\orbr{\begin{cases}\\\end{cases}}\) được nếu lồng sẽ bị lỗi nên tớ dùng chữ "và" nha bạn

b) 

A = \(|x-2006|+|2007-x|\)

Vì \(\hept{\begin{cases}|x-2006|\ge0\\|2007-x|\ge0\end{cases}}\)

Nến giá trị A sẽ nhỏ nhất khi \(\orbr{\begin{cases}x=2006\\x=2007\end{cases}}\)

=> Min A = 1 khi x ={2006 ; 2007}

17 tháng 10 2019

1. a) Ta có: M  = |x + 15/19| \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19

Vậy MinM = 0 <=> x = -15/19

b) Ta có: N = |x  - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x

Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7

Vậy MinN = -1/2 <=> x = 4/7

17 tháng 10 2019

2a) Ta có: P = -|5/3 - x|  \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3

Vậy MaxP = 0 <=> x = 5/3

b) Ta có: Q = 9 - |x - 1/10| \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10

Vậy MaxQ = 9 <=> x = 1/10

10 tháng 12 2019

Ta có:

\(\left(x-\frac{1}{2}\right)^2\ge0;\left|3x+2y\right|\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2+\left|3x+2y\right|\ge0\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left|3x+2y\right|+2006\ge2006\)

Dấu "=" xảy ra tại \(\hept{\begin{cases}x-\frac{1}{2}=0\\3x=-2y\end{cases}}\Rightarrow x=\frac{1}{2};y=-\frac{3}{4}\)

Vậy \(A_{min}=2006\Leftrightarrow x=\frac{1}{2};y=-\frac{3}{4}\)

7 tháng 5 2018

Giá trị nhỏ nhất của A(x) là 8 nha bạn 

7 tháng 5 2018

Ai chả bt nhưng hỏi cách giải cơ 

8 tháng 3 2018

Vì \(\left(\left|x-3\right|+2\right)^2\ge0\left(\forall x\in Z\right)\)

       \(\left|y+3\right|\ge3\left(\forall y\in Z\right)\)

\(\Rightarrow P=\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2007\ge2007\)

Dấu "=" xảy ra khi \(\left(\left|x-3\right|+2\right)^2=0\Rightarrow\left|x-3\right|+2=0\Rightarrow\left|x-3\right|=-2\)

                                  \(\Rightarrow x\in\varnothing\) (Vì giá trị của GTTĐ không thể là một số âm)

         \(\left|y+3\right|=0\Rightarrow y+3=0\Rightarrow y=-3\)

Vậy \(P_{min}=2007\Leftrightarrow y=-3;x\in\varnothing\)

21 tháng 5 2020

Có: \(|x-1|\ge0\)

      \(|x-2|\ge0\)

     .................

      \(|x-2019|\ge0\)

=>  \(A\ge0\)

   Vậy giá trị nhỏ nhất của A là 0

21 tháng 5 2020

Cám ơn bạn nhiều <3