Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{xy}\le\frac{x+y}{2}=\frac{2a}{2}=a\Rightarrow xy\le a^2\)
Ta có : \(A=\frac{x+y}{xy}\ge\frac{2a}{a^2}=\frac{a}{2}\)
Dấu "=" xảy ra khi x = y = a
vậy ....
\(S=x+y+\frac{3}{4x}+\frac{3}{4y}\)
\(=x+y+\frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(\ge x+y+\frac{3}{x+y}\)
\(=\left(x+y+\frac{16}{9\left(x+y\right)}\right)+\frac{11}{9\left(x+y\right)}\)
\(\ge\frac{4}{3}+\frac{11}{9\cdot\frac{4}{3}}=\frac{43}{12}\)
Tại \(x=y=\frac{2}{3}\)
Tham khảo bài 8 trong link: Câu hỏi của Nguyễn Linh Chi - Toán lớp - Học toán với OnlineMath
Tham khảo link này : https://olm.vn/hoi-dap/detail/223163065606.html
Áp dụng bđt cosi ta được \(4x+\frac{1}{4x}\ge2\sqrt{4x.\frac{1}{4x}}=2\)
\(x+\frac{1}{4}\ge2\sqrt{\frac{1}{4}x}=\sqrt{x}\Leftrightarrow4x+1\ge4\sqrt{x}\Leftrightarrow4\left(x+1\right)\ge4\sqrt{x}+3\Leftrightarrow-\left(4\sqrt{x}+3\right)\ge-4\left(x+1\right)\Leftrightarrow-\frac{\left(4\sqrt{x}+3\right)}{x+1}\ge-4\)Khi đó \(A\ge2-4+2016=2014\)
Dấu = xảy ra khi x=1/4
Áp dụng bất đẳng thức Cosi, ta được :
\(f\left(x\right)=x^2+\frac{2}{x^3}=\frac{x^2}{3}+\frac{x^2}{3}+\frac{x^2}{3}+\frac{1}{x^3}+\frac{1}{x^3}\ge5.\sqrt[5]{\frac{x^2}{3}.\frac{x^2}{3}.\frac{x^2}{3}.\frac{1}{x^3}.\frac{1}{x^3}}=5.\sqrt[5]{\frac{1}{27}}=\frac{5}{\sqrt[5]{27}}\)
\(\Rightarrow Min f\left(x\right) =\frac{ 5}{\sqrt[5]{27}}\Leftrightarrow x=\sqrt[5]{3}\)
I) Đk: x > 0 và x \(\ne\)9
\(D=\left(\frac{x+3}{x-9}+\frac{1}{\sqrt{x}+3}\right):\frac{\sqrt{x}}{\sqrt{x}-3}\)
\(D=\frac{x+3+\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}-3}{\sqrt{x}}\)
\(D=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}+3}\)
=> \(\frac{1}{D}=\frac{\sqrt{x}+3}{\sqrt{x}+1}=\frac{\sqrt{x}+1+2}{\sqrt{x}+1}=1+\frac{2}{\sqrt{x}+1}\)
Để 1/D nguyên <=> \(\frac{2}{\sqrt{x}+1}\in Z\)
<=> \(2⋮\left(\sqrt{x}+1\right)\) <=> \(\sqrt{x}+1\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
Do \(x>0\) => \(\sqrt{x}+1>1\) => \(\sqrt{x}+1=2\)
<=> \(\sqrt{x}=1\) <=> x = 1 (tm)
\(E=\left(\frac{x+2}{x\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right)\cdot\frac{4\sqrt{x}}{3}\)
\(E=\frac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\frac{4\sqrt{x}}{3}\)
\(E=\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\frac{4\sqrt{x}}{3}=\frac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)
b) Với x\(\ge\)0; ta có:
\(E=\frac{8}{9}\) <=> \(\frac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\frac{8}{9}\)
<=> \(3\sqrt{x}=2x-2\sqrt{x}+2\)
<=> \(2x-4\sqrt{x}-\sqrt{x}+2=0\)
<=> \(\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=0\)
<=> \(\orbr{\begin{cases}x=\frac{1}{4}\left(tm\right)\\x=4\left(tm\right)\end{cases}}\)
e) Ta có: \(E=\frac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\ge0\forall x\in R\) (vì \(x-\sqrt{x}+1=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\))
Dấu "=" xảy ra<=> x = 0
Vậy MinE = 0 <=> x = 0
Lại có: \(\frac{1}{E}=\frac{3\left(x-\sqrt{x}+1\right)}{4\sqrt{x}}=\frac{3}{4}\left(\sqrt{x}-1+\frac{1}{\sqrt{x}}\right)\ge\frac{3}{4}\left(2\sqrt{\sqrt{x}\cdot\frac{1}{\sqrt{x}}}-1\right)\)(bđt cosi)
=> \(\frac{1}{E}\ge\frac{3}{2}.\left(2-1\right)=\frac{3}{2}\)=> \(E\le\frac{2}{3}\)
Dấu "=" xảy ra<=> \(\sqrt{x}=\frac{1}{\sqrt{x}}\) <=> x = 1
Vậy MaxE = 2/3 <=> x = 1
\(A=x+\frac{1}{y}+\frac{4}{x-y}\)
\(A=x-y+\frac{4}{x-y}+y+\frac{1}{y}\)
Do \(x>y\Leftrightarrow x-y>0\)nên ta có thể áp dụng bất đẳng thức Cô-si cho 2 số dương \(x-y\)và \(\frac{4}{x-y}\)
Ta được \(x-y+\frac{4}{x-y}\ge2\sqrt{\left(x-y\right).\frac{4}{x-y}}=4\)
Vì \(y>0\)nên ta áp dụng bất đẳng thức Cô-si cho 2 số dương \(y\)và \(\frac{1}{y}\), ta có:
\(y+\frac{1}{y}\ge2\sqrt{y.\frac{1}{y}}=2\)
Vậy \(A=x-y+\frac{4}{x-y}+y+\frac{1}{y}\ge4+2=6\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-y=\frac{4}{x-y}\\y=\frac{1}{y}\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^2=4\\y^2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y=2\left(x-y>0\right)\\y=1\left(y>0\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=1\end{cases}}\)
Vậy GTNN của A là 6 khi \(\hept{\begin{cases}x=3\\y=1\end{cases}}\)