Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Bunhiacopxki dạng phân thức, ta có : \(1=\frac{\left(\sqrt{a}\right)^2}{x}+\frac{\left(\sqrt{b}\right)^2}{y}\ge\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{x+y}\Leftrightarrow x+y\ge\left(\sqrt{a}+\sqrt{b}\right)^2\)
Đẳng thức xảy ra khi \(\frac{\frac{a}{x}}{x}=\frac{\frac{b}{y}}{y}\)
\(P=\left(\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{4\sqrt{x}-3}{2\sqrt{x}-x}\right):\)\(\left(\frac{\sqrt{x}+2}{\sqrt{x}}-\frac{\sqrt{x}-4}{\sqrt{x}-2}\right)\)
\(=\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{4\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)\(:\left(\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)-\sqrt{x}\left(\sqrt{x}-4\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)
\(=\frac{x-4\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-2\right)}:\frac{x-4-x+4\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}.\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{4\left(\sqrt{x}-1\right)}\)
\(=\frac{\sqrt{x}-3}{4}\)
\(b,\)Để \(P>0\Rightarrow\frac{\sqrt{x}-3}{4}>0\)
Mà \(4>0\Rightarrow\sqrt{x}-3>0\Rightarrow\sqrt{x}>3\Rightarrow x>9\)
\(c,\sqrt{P}_{min}=0\Rightarrow\frac{\sqrt{x}-3}{4}=0\)
\(\Leftrightarrow\sqrt{x}-3=0\Rightarrow\sqrt{x}=3\Rightarrow x=9\)
Do điều kiện là x > 0 nên sẽ khó khăn khi quy đồng và xét delta.
Áp dụng bất đẳng thức Côsi
\(A=x+\frac{5}{2x}-3\ge2\sqrt{x.\frac{5}{2x}}-3=\sqrt{10}-3\)
Dấu "=" xảy ra khi \(x=\frac{5}{2x}\text{ và }x>0\Leftrightarrow x=\sqrt{\frac{5}{2}}\)
Vậy GTNN của A là \(\sqrt{10}-3\)
\(B=\frac{x^2+\left(a+b\right)x+ab}{x}=x+\frac{ab}{x}+a+b\ge2\sqrt{x.\frac{ab}{x}}+a+b=2\sqrt{ab}+a+b\)
Dấu "=" xảy ra khi \(x=\frac{ab}{x}\text{ và }x>0\Leftrightarrow x=\sqrt{ab}\)
Vậy GTNN của B là \(2\sqrt{ab}+a+b\)
\(Q=\frac{x^3}{4\left(y+2\right)}+\frac{y^3}{4\left(x+2\right)}=\frac{x^3\left(x+2\right)}{4\left(x+2\right)\left(y+2\right)}+\frac{y^3\left(y+2\right)}{4\left(x+2\right)\left(y+2\right)}\)
\(=\frac{x^4+y^4+2x^3+2y^3}{4\left(x+2\right)\left(y+2\right)}=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{4\left(xy+2x+2y+4\right)}\)
\(=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{4\left(2x+2y+8\right)}=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{8\left(x+y+4\right)}\)
Áp dụng bất đẳng thức AM-GM ta có :
\(x^4+y^4\ge2\sqrt{x^4y^4}=2x^2y^2\)
\(x^2+y^2\ge2\sqrt{x^2y^2}=2xy\)
\(Q=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{8\left(x+y+4\right)}\ge\frac{2x^2y^2+2xy\left(x+y\right)}{8\left(x+y+4\right)}=\frac{2xy\left(xy+x+y\right)}{8\left(x+y+4\right)}=\frac{8\left(x+y+4\right)}{8\left(x+y+4\right)}=1\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x,y>0\\x=y\\xy=4\end{cases}}\Rightarrow x=y=2\)
Vậy GTNN của Q là 1 <=> x = y = 2
Or
\(Q-1=\frac{\left(x^2-y^2\right)^2+2\left(x+y\right)\left(x^2+y^2-8\right)}{4\left(x+2\right)\left(y+2\right)}\ge0\)*đúng do \(x^2+y^2\ge2xy=8\)*
Do đó \(Q\ge1\)
Đẳng thức xảy ra khi x = y = 2
\(B=\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)\)
\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\left(1-\frac{1}{x}\right)\left(1-\frac{1}{y}\right)\)
\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\cdot\frac{x-1}{x}\cdot\frac{y-1}{y}\)
\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\cdot\frac{\left(-x\right)\left(-y\right)}{xy}\)
\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\)
\(=1+\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=1+\frac{x+y}{xy}+\frac{1}{xy}\)
\(=1+\frac{2}{xy}\ge1+\frac{2}{\frac{\left(x+y\right)^2}{4}}=1+\frac{2}{\frac{1}{4}}=1+8=9\)
Vậy GTNN của B = 9 khi \(x=y=\frac{1}{2}\)
Bài 1 : \(A=\frac{2016}{x^2-2x+2017}\) đạt GTLN khi \(x^2-2x+2017\) đạt GTNN .
\(x^2-2x+2017=x^2-2x+1+2016=\left(x-1\right)^2+2016\Rightarrow GTNN\) của \(x^2-2x+2017\) là \(2016\)
\(\Rightarrow GTLN\) của \(A\) là : \(\frac{2016}{2016}=1\)
Bài 2 :
a ) Đặt \(A=\frac{2}{6x-9x^2-21}.A\) đạt \(GTNN\) Khi \(\frac{1}{A}\) đạt \(GTLN\).
Ta có : \(\frac{1}{A}=\frac{-9x^2+6x-21}{20}=-\frac{9}{20}\left(x-\frac{1}{3}\right)^2-1\le-1\)
Vậy \(Max\left(\frac{1}{A}\right)=-1\Leftrightarrow x=\frac{1}{3}\)
\(\Rightarrow Min_A=-1\Rightarrow x=\frac{1}{3}\)
b ) Đặt \(B=\left(x-1\right)\left(x-2\right)\left(x-5\right)\left(x-6\right)\)
Ta có : \(B=\left[\left(x-1\right)\left(x-6\right)\right].\left[\left(x-2\right)\left(x-5\right)\right]=\left(x^2-7x+6\right)\left(x^2-7x+10\right)\)
Đặt \(y=x^2-7x+8\Rightarrow B=\left(y+2\right)\left(y-2\right)=y^2-4\ge-4\)
\(Min_B=-4\) khi và chỉ khi \(x^2-7x+8=0\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{7+\sqrt{17}}{2}\\x=\frac{7-\sqrt{17}}{2}\end{array}\right.\)
a có:\(\frac{\left(x-y\right)^2}{xy}\ge0\forall x,y\)
\(\Leftrightarrow\frac{x^2+y^2-2xy}{xy}\ge0\)
\(\Leftrightarrow\frac{x}{y}+\frac{y}{x}-2\ge0\)
\(\Leftrightarrow\frac{x}{y}+\frac{y}{x}\ge2\left(1\right)\)
Áp dụng BĐT Cô-si vào các số dương \(\frac{x^2}{y^2},\frac{y^2}{x^2}\)ta có:
\(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge2\sqrt{\frac{x^2}{y^2}.\frac{y^2}{x^2}}=2\left(2\right)\)
Áp dụng BĐT \(\left(1\right),\left(2\right)\)ta được:
\(A=3\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)-8\left(\frac{x}{y}+\frac{y}{x}\right)\ge3.2-8.2=-10\)
Dấu '=' xảy ra khi \(x=y\)
Vậy \(A_{min}=-10\)khi \(x=y\)