Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay x = 11 => x + 1 = 12
Ta có : x4 - 12x3 + 12x2 - 12x + 111
= x4 - (x + 1).x3 + (x + 1).x2 - (x + 1).x + 111
= x4 - x4 + x3 - x3 + x2 - x2 + x + 111
= 111 - x
= 111 - 11
= 100
Mà
a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)
Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)
\(\Rightarrow\left(2x-3\right)^2+91\ge91\)
hay A \(\ge91\)
Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)
<=> 2x-3=0
<=> 2x=3
<=> \(x=\frac{3}{2}\)
Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)
b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)
Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x+\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)
\(C=2x^2+2xy+y^2-2x+2y+2\)
\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)
\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)
Ta có:
\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)
\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)
hay C\(\ge\)1
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)
Vậy Min C=1 đạt được khi y=1 và x=0
a) A = x2 + 12x + 39
= ( x2 + 12x + 36 ) + 3
= ( x + 6 )2 + 3 ≥ 3 ∀ x
Đẳng thức xảy ra ⇔ x + 6 = 0 => x = -6
=> MinA = 3 ⇔ x = -6
B = 9x2 - 12x
= 9( x2 - 4/3x + 4/9 ) - 4
= 9( x - 2/3 )2 - 4 ≥ -4 ∀ x
Đẳng thức xảy ra ⇔ x - 2/3 = 0 => x = 2/3
=> MinB = -4 ⇔ x = 2/3
b) C = 4x - x2 + 1
= -( x2 - 4x + 4 ) + 5
= -( x - 2 )2 + 5 ≤ 5 ∀ x
Đẳng thức xảy ra ⇔ x - 2 = 0 => x = 2
=> MaxC = 5 ⇔ x = 2
D = -4x2 + 4x - 3
= -( 4x2 - 4x + 1 ) - 2
= -( 2x - 1 )2 - 2 ≤ -2 ∀ x
Đẳng thức xảy ra ⇔ 2x - 1 = 0 => x = 1/2
=> MaxD = -2 ⇔ x = 1/2
Ta có A = x2 + 12x + 39 = (x2 + 12x + 36) + 3 = (x + 6)2 + 3 \(\ge\)3
Dấu "=" xảy ra <=> x + 6 = 0
=> x = -6
Vậy Min A = 3 <=> x = -6
Ta có B = 9x2 - 12x = [(3x)2 - 12x + 4] - 4 =(3x - 2)2 - 4 \(\ge\)-4
Dấu "=" xảy ra <=> 3x - 2 =0
=> x = 2/3
Vậy Min B = -4 <=> x = 2/3
b) Ta có C = 4x - x2 + 1 = -(x2 - 4x - 1) = -(x2 - 4x + 4) + 5 = -(x - 2)2 + 5 \(\le\)5
Dấu "=" xảy ra <=> x - 2 = 0
=> x = 2
Vậy Max C = 5 <=> x = 2
Ta có D = -4x2 + 4x - 3 = -(4x2 - 4x + 1) - 2 = -(2x - 1)2 - 2 \(\le\)-2
Dấu "=" xảy ra <=> 2x - 1 = 0
=> x = 0,5
Vậy Max D = -2 <=> x = 0,5
a=[(2x)^2+2.2x.3+3^2]+(y^2-2y+1)+2014
=(2x+3)^2+(y-1)^2+2014
ta thấy
2x+3)^2>=0 voi moi x
(y-1)^2>=0 voi moi y
=>(2x+3)^2+(y-1)^2+2014>=2014
a>=2014 dấu = xay ra khi;
2x+3)^2=0 va (y-1)^2=0
=>x=-3/2:y=1
\(4x^2+12x+y^2-2y+2024\)
\(=\left(4x^2+12x+9\right)+\left(y^2-2y+1\right)+2014\)
\(=\left(2x+3\right)^2+\left(y-1\right)^2+2014\)
Dấu "=" xảy ra <=> x = -3/2; y = 1
Vậy...
\(4x^2+12x+y^2-2y+2024\)
\(=\left(4x^2+12x+9\right)+\left(y^2-2y+1\right)+2014\)
\(=\left(2x+3\right)^2+\left(y-1\right)^2+2014\)
Dấu "=" xảy ra <=> x = -3/2; y = 1
Vậy...
\(A=\left(x-y-6\right)^2+6y^2+2y+45-\left(y^2+12y+36\right)\\ \)
\(A=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\)\(\ge4\)
Amin=4 khi y=1; x=7
\(A=\left(x-y-6\right)^2+6y^2+2y+45-\left(y^2+12y+36\right) \)
\(A=\left(x-7-6\right)^2+5\left(y-1^2\right)+4\ge4\)
\(Amin=4\)\(khi\)\(y=1;x=7\)
C = 2x2 + 2y2 + 26 + 12x - 8y
C = (2x2 + 12x + 18) + (2y2 - 8y + 8)
C = 2(x2 + 6x + 9) + 2(y2 - 4y + 4)
C = 2(x + 3)2 + 2(y - 2)2 \(\ge\)0 với mọi x;y
Dấu "=" xảy ra <=> x + 3 = 0 và y - 2 = 0
<=> x = -3 và y = 2
Vậy MinC = 0 khi x = -3 và y = 2
\(C=2\left(x^2+6x+9\right)+2\left(y^2-4y+4\right)=2\left(x+3\right)^2+2\left(y-2\right)^2\ge0\)
Vậy MIN C=0 khi và chỉ khi x+3=y-2=0 suy ra x=-3;y=2
Ta có:
a) A = x2 + 6x + 10 = (x2 + 6x + 9) + 1 = (x + 3)2 + 1 \(\ge\)1 \(\forall\)x
Dấu "=" xảy ra <=> x + 3 = 0 <=> x = -3
Vậy MinA = 1 <=> x = -3
b) B = 4x2 - 12x + 13 = 4(x2 - 3x + 9/4) + 4 = 4(x - 3/2)2 + 4 \(\ge\)4 \(\forall\)x
Dấu "=" xảy ra <=> x - 3/2 = 0 <=> x = 3/2
Vậy MinB = 4 <=> x = 3/2
\(x^2-12x+33\)
\(=\left(x^2-2.6x+6^2\right)-3\)
\(=\left(x-6\right)^2-3\)
Ta có :
\(\left(x-6\right)^2\ge0\)
\(\Rightarrow\left(x-6\right)^2-3\ge-3\)
\(\Rightarrow GTNN\)của \(\left(x-6\right)^2-3=-3\Leftrightarrow x-6=0\Leftrightarrow x=6\)
\(x^2-12x+33\)
\(=x^2-2.x.6+6^2-6^2+33\)
\(=\left(x-6\right)^2-6^2+33\)
\(=\left(x-6\right)^2-3\)
Vì \(\left(x-6\right)^2\ge0\) với mọi x
nên \(\left(x-6\right)^2-3\ge-3\)
=> GTNN của f(x) là -3 khi \(\left(x-6\right)^2=0\) => x = 6