Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A = x2 + 2x + y2 - 4y - 4 = (x2 + 2x + 1) + (y2 - 4y + 4) - 9 = (x + 1)2 + (y - 2)2 - 9
Ta luôn có: (x + 1)2 \(\ge\)0 \(\forall\)x
(y - 2)2 \(\ge\)0 \(\forall\)y
=> (x + 1)2 + (y - 2)2 - 9 \(\ge\)-9 \(\forall\)x;y
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x+1=0\\y-2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
vậy Min của A = -9 tại x = -1 và y = 2
\(P=\frac{x^2+x+1}{x^2+2x+1}\)\(=\frac{x^2+2x+1}{\left(x+1\right)^2}\frac{ }{ }\frac{x}{\left(x+1\right)^2}\)\(=1-\frac{1}{x+1}+\frac{1}{\left(x+1\right)^2}\)\(=\frac{1}{4}-\frac{1}{x+1}+\frac{1}{\left(x+1\right)^2}+\frac{3}{4}\)\(=\left(\frac{1}{2}-\frac{1}{x+1^{ }}\right)^2+\frac{3}{4}\)> hoặc = \(\frac{3}{4}\) với mọi x
Dấu = xảy ra <=> \(\frac{1}{x+1}\)=\(\frac{1}{2}\) <=> x = 1
Bạn Nguyễn Châu Anh nha ! Bạn làm tắt từ dấu bằng thứ ba làm mình mãi mới luận đc tưởng sai oan cho bạn !!! ai coi đc cái này đừng hiểu lầm bạn ấy ! Thank you nhìu !!!
Ta có:\(A^3+B^3+C^3-3ABC=A^3+3A^2B+3AB^2+B^3+C^3-3AB\left(A+B+C\right)\)
\(=\left(A+B\right)^3+C^3-3AB\left(A+B+C\right)\)\(=\left(A+B+C\right)\left(A^2+B^2+C^2-AB-BC-CA\right)\)
Mặt khác:\(\left(A-B\right)^2+\left(B-C\right)^2+\left(C-A\right)^2=A^2-2AB+B^2+B^2-2BC+C^2+C^2-2CA+A^2\)
\(=2\left(A^2+B^2+C^2-AB-BC-CA\right)\)
Nên giá trị của phân thức là:\(\frac{A+B+C}{2}\)