K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2017

 \(x^2-2x+y^2-4x+7=x^2-2x+1+y^2-4x+4+2\)

=\(\left(x-1\right)^2+\left(y-2\right)^2+2\) \(\ge2\) dau = xay ra\(\Leftrightarrow x=1,y=2\)

\(\)vay min =2 

17 tháng 6 2017

mk k hiểu cách bn kia làm bừa theo cách này vậy 

x^2 - 6x +7 +y^2 <=>(x-3)^2 +y^2 -2 >= -2

dấu bằng xáy ra khi x =3 y =0 min = -2 hay 2 j đó 

( sai thf thui nha bn)

8 tháng 11 2019

\(M=\left(2x-1\right)^2-3\left|2x-1\right|+2=\left|2x-1\right|^2-3\left|2x-1\right|+2\)

Đặt: | 2x -1 | = t ( t >=0)

=> \(M=t^2-3t+2=\left(t^2-2.t.\frac{3}{2}+\frac{9}{4}\right)-\frac{9}{4}+2\)

\(=\left(t-\frac{3}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

Dấu "=" xảy ra <=> \(t=\frac{3}{2}\)( tm)

khi đó: \(\left|2x-1\right|=\frac{3}{2}\Leftrightarrow\orbr{\begin{cases}2x-1=\frac{3}{2}\\2x-1=-\frac{3}{2}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{3}{4}\\x=-\frac{1}{4}\end{cases}}\)

Vậy min M = -1/4 <=> x =3/4 hoặc x =- 1/4

7 tháng 9 2017

\(2\left(x^2+2.\frac{3}{4}x+\frac{9}{16}\right)+\frac{7}{8}=2\left(x+\frac{3}{4}\right)^2+\frac{7}{8}\ge\frac{7}{8}\)

dau = xay ra khi va chi khi \(x=-\frac{3}{4}\)

\(x^2+2x+1=\left(x+1\right)^2\ge0\) dau = xay ra khi va chi khi \(x=-1\)

28 tháng 4 2017

cộng 1 và trừ 1 nhé và đây là toán 8 thôi 

9 tháng 3 2019

Đây là toán 9 mà?

\(A=\frac{2x+1}{x^2+2}\Leftrightarrow Ax^2-2x+\left(2A-1\right)=0\) (1)

+)A = 0 thì \(x=-\frac{1}{2}\)

+)A khác 0 thì (1) là pt bậc 2.(1) có nghiệm tức là \(\Delta'=1-A\left(2A-1\right)\ge0\)

\(\Leftrightarrow-2A^2+A+1\ge0\Leftrightarrow-\frac{1}{2}\le A\le1\)

Thay vào giải x

1 tháng 6 2016

\(B=\left(x^2+2xy+y^2\right)+\left(x^2-4x+4\right)+2016\)

\(B=\left(x+y\right)^2+\left(y-2\right)^2+2016\)

Vậy Min B =2016 <=> x=-2;y=2

4 tháng 4 2016

<=> yx2+2xy+2y=x2+2x+2   (1)

<=>(y-1)x2+2x(y-1)+2y-2=0

delta'=(y-1)2-2(y-1)2=-(y2-2y+1)=-y2+2y-1

để phương trình (1) có nghiệm thì delta' phải lớn hơn hoặc bằng 0

=> y=1

=> min y=1 

Câu 1. Chứng minh √7 là số vô tỉ.Câu 2.a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.Câu 4.a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: b) Cho a, b, c > 0. Chứng minh rằng: c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.Câu...
Đọc tiếp

Câu 1. Chứng minh √7 là số vô tỉ.

Câu 2.

a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)

b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)

Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.

Câu 4.

a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: 

b) Cho a, b, c > 0. Chứng minh rằng: 

c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.

Câu 5. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: M = a3 + b3.

Câu 6. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức: N = a + b.

Câu 7. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

Câu 8. Tìm liên hệ giữa các số a và b biết rằng: |a + b| > |a - b|

Câu 9.

a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a

b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8

Câu 10. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2)

b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

Câu 11. Tìm các giá trị của x sao cho:

a) |2x – 3| = |1 – x|

b) x2 – 4x ≤ 5

c) 2x(2x – 1) ≤ 2x – 1.

Câu 12. Tìm các số a, b, c, d biết rằng: a2 + b2 + c2 + d2 = a(b + c + d)

Câu 13. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của a và b thì M đạt giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó.

Câu 14. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. Chứng minh rằng giá trị nhỏ nhất của P bằng 0.

Câu 15. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau:

x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0

3
16 tháng 1 2016

mình có phần của mấy bài tập này

mình tải về rùi mà ko nhớ link 

có đáp án nữa

 

16 tháng 1 2016

chuyen-de-BD-HSG-Toan9.pdf