K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2021

\(P-2015=\dfrac{\left(x-1\right)^2}{x^2}\ge0\) nên \(P\ge2015\), xảy ra dấu bằng khi x = 1.

20 tháng 3 2020

\(M=\frac{2016x+1512}{x^2+1}\)

\(=\frac{-504x^2-504+504x^2+2016x+2016}{x^2+1}\)

\(=-504+\frac{504\left(x^2+4x+4\right)}{x^2+1}\)

\(=-504+\frac{504\left(x+2\right)^2}{x^2+1}\)

\(\ge-504\)

Dấu "=" xảy ra tại x=-2

Vậy.....

6 tháng 7 2016

bài 2 á. Nói rõ hơn đi bạn mình chưa hiểu

10 tháng 2 2021

Ta có: \(P=\frac{2016x^2-2x+1}{x^2}=\frac{2015x^2+\left(x^2-2x+1\right)}{x^2}\)

\(=2015+\frac{\left(x-1\right)^2}{x^2}\ge2015\left(\forall x\ne0\right)\)

Dấu "=" xảy ra khi: \(\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy Min(P) = 2015 khi x = 1

Ta có : \(P=\frac{2016x^2-2x+1}{x^2}\)

\(=\frac{2015x^2+\left(x-1\right)^2}{x^2}\)

\(=2015+\left(\frac{x-1}{x}\right)^2\)

Vì \(\left(\frac{x-1}{x}\right)^2\ge0\forall x\ne0\)

\(\Rightarrow P\ge2015\forall x\ne0\)

Dấu \("="\) xảy ra \(\Leftrightarrow\left(\frac{x-1}{x}\right)^2=0\)

\(\Leftrightarrow\frac{x-1}{x}=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\)

Vậy \(MinP=2015\Leftrightarrow x=1\)

5 tháng 5 2017

\(A=\dfrac{6x-8}{x^2+1}=\dfrac{\left(x^2+1\right)+\left(-x^2+6x-9\right)}{x^2+1}\)

\(=1-\dfrac{\left(x-3\right)^2}{x^2+1}\le1\)

Vậy GTLN là A = 1 đạt được khi x = 3

5 tháng 5 2017

quá hay

20 tháng 10 2016

Câu 1 :

\(\left(2x+3\right)^2\)  = \(4x^2+12x+9\)  

Vậy : 

Biểu thức ?$(2x+3)^2$ khi khai triển có hệ số của hạng tử bậc nhất là 12
Câu 2:
\(\left(3x+1\right)^2\) = \(9x^2\) + \(6+1\)  
Tổng các hệ số của đa thức ?$(3x+1)^2$ khi khai triển là 9 + 6 + 1 = 16
 
 
 
20 tháng 10 2016
Câu 3
 Độ dài đường trung bình của hình thang ?$MNPQ$ là  
\(\frac{MN+PQ}{2}\) = \(\frac{4+6}{2}\) = 5(cm)