Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(P=\frac{2016x^2-2x+1}{x^2}=\frac{2015x^2+\left(x^2-2x+1\right)}{x^2}\)
\(=2015+\frac{\left(x-1\right)^2}{x^2}\ge2015\left(\forall x\ne0\right)\)
Dấu "=" xảy ra khi: \(\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy Min(P) = 2015 khi x = 1
Ta có : \(P=\frac{2016x^2-2x+1}{x^2}\)
\(=\frac{2015x^2+\left(x-1\right)^2}{x^2}\)
\(=2015+\left(\frac{x-1}{x}\right)^2\)
Vì \(\left(\frac{x-1}{x}\right)^2\ge0\forall x\ne0\)
\(\Rightarrow P\ge2015\forall x\ne0\)
Dấu \("="\) xảy ra \(\Leftrightarrow\left(\frac{x-1}{x}\right)^2=0\)
\(\Leftrightarrow\frac{x-1}{x}=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Vậy \(MinP=2015\Leftrightarrow x=1\)
\(M=\frac{2016x+1512}{x^2+1}\)
\(=\frac{-504x^2-504+504x^2+2016x+2016}{x^2+1}\)
\(=-504+\frac{504\left(x^2+4x+4\right)}{x^2+1}\)
\(=-504+\frac{504\left(x+2\right)^2}{x^2+1}\)
\(\ge-504\)
Dấu "=" xảy ra tại x=-2
Vậy.....
\(A=\frac{2007x^2-2x.2007+2007^2}{2007x^2}=\frac{x^2-2x.2007+2007^2}{2007x^2}+\frac{2006x^2}{2007x^2}\)
\(=\frac{\left(x-2007\right)^2}{2007x^2}+\frac{2006}{2007}\ge\frac{2006}{2007}\)
A min =\(\frac{2006}{2007}\)khi \(x-2007=0\)
\(\Leftrightarrow x=2007\)
\(A=\frac{2007x^2-2x.2007+2007^2}{2007x^2}\)
\(A=\frac{x^2-2x.2007-2007^2}{2007x^2}+\frac{2006x^2}{2007x^2}\)
\(A=\frac{\left(x-2007\right)^2}{2007x^2}+\frac{2006}{2007}\ge\frac{2006}{2007}\)
\(\Rightarrow Amin=\frac{2006}{2007}\)khi \(x-2007=0\)
\(\Rightarrow x=2007\)
\(A=\frac{x^2-2x+2011}{x^2}=\frac{x^2}{x^2}-\frac{2x}{x^2}+\frac{2011}{x^2}=1-\frac{2}{x}+\frac{2011}{x^2}\)
Đặt \(t=\frac{1}{x}\) ta có: \(A=2011t^2-2t+1\)
\(\Leftrightarrow A=2011t^2-2t+\frac{1}{2011}+\frac{2010}{2011}\)
\(\Leftrightarrow A=2011\left(t^2-\frac{2t}{2011}+\frac{1}{2011^2}\right)+\frac{2010}{2011}\)
\(\Leftrightarrow A=2011\left(t-\frac{1}{2011}\right)^2+\frac{2010}{2011}\ge\frac{2010}{2011}\)
Đẳng thức xảy ra khi \(t=\frac{1}{2011}\Leftrightarrow x=2011\)
Ta có:\(\frac{x^2-2x+2011}{x^2}\ge\frac{2010}{2011}\Rightarrow2011\left(x^2-2x+2011\right)\ge2010x^2\)
\(\Rightarrow2011x^2-2x2011+2011^2\ge2010^2\)
\(\Rightarrow2011x^2-2x2011+2011-2010x^2\ge0\)
\(\Rightarrow x^2-2x2011+2011^2\ge0\)
\(\Rightarrow\left(x-2011\right)^2\ge0\)(đúng)
\(\Rightarrow\)đpcm
điều kiện của x để gtrị của biểu thức đc xác định
=>\(2x+10\ne0;x\ne0:2x\left(x+5\right)\ne0\)
\(2x+5\ne0;x\ne0\)
=>\(x\ne-5;x\ne0\)
vậy đkxđ là \(x\ne-5;x\ne0\)
rút gon giống với bạn nguyen thuy hoa đến \(\dfrac{x-1}{2}\)
b,để bt =1=>\(\dfrac{x-1}{2}=1\)
=>x-1=2
=>x=3 thỏa mãn đkxđ
c,d giống như trên
\(P-2015=\dfrac{\left(x-1\right)^2}{x^2}\ge0\) nên \(P\ge2015\), xảy ra dấu bằng khi x = 1.