Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=x-2\sqrt{2x-1}=x-\frac{1}{2}-2.\sqrt{x-\frac{1}{2}}.\sqrt{2}+2-\frac{3}{2}=\left(\sqrt{x-\frac{1}{2}}-\sqrt{2}\right)^2-\frac{3}{2}\ge-\frac{3}{2}\)
...
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A=\left|2x-2\right|+\left|2x-2016\right|=\left|2-2x\right|+\left|2x-2016\right|\)
\(\ge\left|2-2x+2x-2016\right|=2014\)
Dấu "=" xảy ra khi \(1\le x\le1008\)
Vậy \(Min_A=2014\) khi \(1\le x\le1008\)
Đây là toán 9 mà?
\(A=\frac{2x+1}{x^2+2}\Leftrightarrow Ax^2-2x+\left(2A-1\right)=0\) (1)
+)A = 0 thì \(x=-\frac{1}{2}\)
+)A khác 0 thì (1) là pt bậc 2.(1) có nghiệm tức là \(\Delta'=1-A\left(2A-1\right)\ge0\)
\(\Leftrightarrow-2A^2+A+1\ge0\Leftrightarrow-\frac{1}{2}\le A\le1\)
Thay vào giải x
\(P=2x^2+\dfrac{7}{2x^2}\)
Áp dụng Bất đẳng thức Cauchy cho 2 cặp số dương \(\left(2x^2;\dfrac{7}{2x^2}\right)\)
\(P=2x^2+\dfrac{7}{2x^2}\ge2\sqrt[]{7}\)
Dấu "=" xảy ra khi và chỉ khi
\(\Leftrightarrow2x^2=\dfrac{7}{2x^2}\)
\(\Leftrightarrow4x^4=7\left(x\ne0\right)\)
\(\Leftrightarrow x^4=\dfrac{7}{4}\)
\(\Leftrightarrow x=\pm\sqrt[4]{\dfrac{7}{4}}\)
Vậy \(GTNN\left(P\right)=2\sqrt[]{7}\left(tại.x=\pm\sqrt[4]{\dfrac{7}{4}}\right)\)
\(2\left|2x-\frac{5}{7}\right|-1\)
Vì \(2\left|2x-\frac{5}{7}\right|\ge0\forall x\)
\(\Rightarrow2\left|2x-\frac{5}{7}\right|-1\ge-1\forall x\)
Vậy \(2\left|2x-\frac{5}{7}\right|-1\) đạt giá trị nhỏ nhất là \(-1\Leftrightarrow2x-\frac{5}{7}=0\Leftrightarrow2x=\frac{5}{7}\Leftrightarrow x=\frac{5}{14}\)
\(M=\left(2x-1\right)^2-3\left|2x-1\right|+2=\left|2x-1\right|^2-3\left|2x-1\right|+2\)
Đặt: | 2x -1 | = t ( t >=0)
=> \(M=t^2-3t+2=\left(t^2-2.t.\frac{3}{2}+\frac{9}{4}\right)-\frac{9}{4}+2\)
\(=\left(t-\frac{3}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
Dấu "=" xảy ra <=> \(t=\frac{3}{2}\)( tm)
khi đó: \(\left|2x-1\right|=\frac{3}{2}\Leftrightarrow\orbr{\begin{cases}2x-1=\frac{3}{2}\\2x-1=-\frac{3}{2}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{3}{4}\\x=-\frac{1}{4}\end{cases}}\)
Vậy min M = -1/4 <=> x =3/4 hoặc x =- 1/4
√(x² + 2x + 5) = √[(x + 1)² + 4] ≥ 2.
√(2x² + 4x + 3) = √[2(x + 1)² + 1] ≥ 1.
=> √(x² + 2x + 5) + √(2x² + 4x + 3) ≥ 3.
___Dấu bằng xảy ra khi và chỉ khi x = - 1.
Vậy biểu thức đã cho có giá trị nhỏ nhất là 3
ai tích mình mình sẽ tích lại
Bằng biến đổi tương đương, ta chứng minh được BĐT : \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)
Biểu diễn : \(A=\sqrt{2}\left(\sqrt{x^2-x+\frac{5}{2}}+\sqrt{x^2-3x+7}\right)\)
\(=\sqrt{2}\left(\sqrt{\left(x-\frac{1}{2}\right)^2+\left(\frac{3}{2}\right)^2}+\sqrt{\left(\frac{3}{2}-x\right)^2+\left(\sqrt{\frac{19}{4}}\right)^2}\right)\ge\sqrt{2}.\sqrt{\left(x-\frac{1}{2}+\frac{3}{2}-x\right)^2+\left(\frac{3}{2}+\frac{\sqrt{19}}{2}\right)^2}=\sqrt{16+3\sqrt{19}}\)=> Min A = \(\sqrt{16+3\sqrt{19}}\)
Dấu "=" bạn tự xét nhé!
Hướng dẫn:
\(A=\left|2x-2\right|+\left|2x-2023\right|\)
\(=\left|2x-2\right|+\left|2023-2x\right|\)
\(\ge\left|2x-2+2023-2x\right|=2021\)
Vậy GTNN của A là 2021, đạt được khi và chỉ khi \(\left(2x-2\right)\left(2023-2x\right)\ge0\)\(\Leftrightarrow1\le x\le\dfrac{2023}{2}\)
m tra ở đâu