Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT gttđ: |a|+|b|\(\ge\) |a+b|
Ta có:A=|1987-3x|+|2718-3x|=|1987-3x|+|3x-2718|\(\ge\) |1987-3x+3x-2718|=|-731|=731
=>AMin=731
Dấu "=" xảy ra\(\Leftrightarrow\left(1987-3x\right)\left(3x-2718\right)\ge0\Leftrightarrow\int^{1987\le3x}_{2718\ge3x}\Leftrightarrow\int^{x\ge}_{x\le906}\frac{1987}{3}\Leftrightarrow\frac{1987}{3}\le x\le906\)
Vậy....
a)Ta có: |x+3|>=0
=>|x+3|+15>=15 hay A>=15
Nên GTNN của A là 15 khi:
x+3=0
x=0-3
x=-3
b)B=|2x+1|-2015
Ta có: |2x+1|>=0
=>|2x+1|-2015>=-2015 hay B>=-2015
Nên GTNN của B là -2015 khi:
2x+1=0
2x=0-1
x=-1/2
c)C=|3x-4|+|y-1|+17
Ta có: |3x-4|>=0
|y-1|>=0
=>|3x-4|+|y-1|+17>=17 hay C>=17
Nên GTNN của C là 17 khi:
3x-4=0 hay y-1=0
3x=0+4 y=0+1
x=4/3 y=1
x4+3x2-4
=(x2)2+1,5.2.x2+2,25-6,25
=(x2+1,5)2-6,25>(=)-6,25
=[ (x^2)^2 + 2.x^2.3/2 + 9/4 ] +7/4
= ( x^2 + 3/2)^2 +7/4 >= 7/4
Vì (x^2 +3/2)^2 >= 0 với mọi x
Dấu = xảy ra <=> x= -3/2
5-/3x-4/
ta có: /3x-4/\(\ge0,\forall x\)
\(\Rightarrow\)5-/3x-4/\(\le5\)
Dấu "=" xảy ra khi 3x-4=0 =>3x=4 =>\(x=\frac{3}{4}\)
Vậy GTNL của 5-/3x-4/ là 5 với x=\(\frac{3}{4}\)
\(\left(4x-6\right)^{2008}+8\)
ta có: \(\left(4x-6\right)^{2008}\ge0,\forall x\)
\(\Rightarrow\left(4x-6\right)^{2008}+8\ge8\)
dấu "=" xảy ra khi (4x-6)2008=0
=> 4x-6=0 =>4x=6 =>x=\(\frac{3}{2}\)
vậy GTNN của (4x-6)2008 là 8 với x=\(\frac{3}{2}\)