K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2020

\(x^2+5x+7=\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{5}{2}\right)^2\ge0\forall x\)\(\Rightarrow\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{5}{2}\right)^2=0\Leftrightarrow x=-\frac{5}{2}\)

Vậy GTNN của bt trên = 3/4 <=> x = - 5/2

29 tháng 8 2020

Trả lời :

\(x^2+5x+7=x^2+2.\frac{5}{2}x+\frac{28}{4}=\left(x^2+2.\frac{5}{x}+\frac{25}{4}\right)+\frac{3}{4}\)

\(=\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\)

Mà \(\left(x+\frac{5}{2}\right)^2\ge0\Rightarrow\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra <=> \(\left(x+\frac{5}{2}\right)^2=0\Rightarrow x=\frac{-5}{2}\)

Vậy GTNN của biểu thức là \(\frac{3}{4}\Leftrightarrow x=\frac{-5}{2}\)

17 tháng 7 2016

a,A=x^2+2.x.5/2+25/4+3/4

    =(x+5/2)2+3/4

nx:(x+5/2)^2 luôn> hoặc = 0 nên (x+5/2)^2+3/4 >hoặc =3/4

vậy GTNN của A là 3/4

b,B=6x-x2-5

    = - (x2-6x+5)

    = - (x2-2.x.3+9-4)

    =-[(x-3)2-4]

    =-(x-3)^2+4

nx; -(x-3)^2 luôn nhỏ  hơn hoặc bằng 0 nên -(x-3)^2 +4 luôn < hoặc= 4

Vậy GTLN của B là 4

15 tháng 7 2019

V1.a)Ta có : \(A=x^2+5x+7=\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\)

Ta có : \(\left(x+\frac{5}{2}\right)^2\ge0=>\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "="xảy ra khi \(x+\frac{5}{2}=0=>x=-\frac{5}{2}\)

Vậy\(A_{min}=\frac{3}{4}\) khi \(x=-\frac{5}{2}\)

b)Ta có : \(B=6x-x^2-5=-\left(x^2-6x+5\right)=-[\left(x-3\right)^2-4]\)

Ta có : \(\left(x-3\right)^2\ge0=>B\le4\)

Dấu "="xảy ra khi (x-3)=0=>x=3

Vậy \(B_{mãx}=4\)khi x=3


 

15 tháng 7 2019

Bài 1: Tìm giá trị:

a) Nhỏ nhất của biểu thức: A = x2 + 5x + 7

Giải phương trình trên máy tính 

Lặp 3 lần dấu" = "

kq : GTNN của A = \(-\frac{5}{2}\)

b) Lớn nhất của biểu thức: B = 6x - x2 - 5

B = -x2 + 6x - 5

Giải phương trình trên máy tính 

Lặp 3 dấu " = "

kq : GTLN của B = 3

1 tháng 7 2018

\(A=x^2+5x+7\)

\(A=\left(x^2+5x+\frac{25}{4}\right)+\frac{3}{4}\)

\(A=\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x+\frac{5}{2}\right)^2=0\)

\(\Leftrightarrow\)\(x+\frac{5}{2}=0\)

\(\Leftrightarrow\)\(x=\frac{-5}{2}\)

Vậy GTNN của \(A\) là \(\frac{3}{4}\) khi \(x=\frac{-5}{2}\)

Chúc bạn học tốt ~ 

1 tháng 7 2018

\(B=6x-x^2-5\)

\(-B=x^2-6x+5\)

\(-B=\left(x^2-6x+9\right)-4\)

\(-B=\left(x-3\right)^2-4\ge-4\)

\(B=-\left(x-3\right)^2+4\le4\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(-\left(x-3\right)^2=0\)

\(\Leftrightarrow\)\(x-3=0\)

\(\Leftrightarrow\)\(x=3\)

Vậy GTLN của \(B\) là \(4\) khi \(x=3\)

Chúc bạn học tốt ~ 

25 tháng 7 2015

A(x) = -3. (x2 - \(\frac{5}{3}\)x - \(\frac{1}{3}\)) = - 3. [(x- 2.x. \(\frac{5}{6}\) + \(\frac{25}{36}\)) - \(\frac{37}{36}\)]= -3. (x - \(\frac{5}{6}\))2 + \(\frac{37}{12}\) \(\le\) (-3).0 + \(\frac{37}{12}\) = \(\frac{37}{12}\) với mọi x

=> A lớn nhất = \(\frac{37}{12}\) khi x - \(\frac{5}{6}\) = 0 <=> x = \(\frac{5}{6}\)

+) Khi lấy x rất lớn thì x 2 rất lớn => -3x2 rất nhỏ và 3x2 lớn hơn 5x => -3x2 rất nhỏ và nhỏ hơn 5x 

=> A càng nhỏ khi x lấy giá trị càng lớn

=> A không tồn tại giá trị nhỏ nhất

 

 

6 tháng 11 2016

Ta có:

x2-5x= x(x-5)

=> Gía trị nhỏ nhất của biểu thức bằng 0 khi x=0 hoặc x=5

26 tháng 7 2018

1, \(3x^2-5x+4\)

\(=3\left(x^2-\frac{5}{3}x\right)+1=3\left(x^2-2.\frac{5}{6}x+\frac{25}{36}\right)+\frac{23}{12}=3\left(x-\frac{5}{6}\right)^2+\frac{23}{12}\)

Ta có: \(3\left(x-\frac{5}{6}\right)^2\ge0\forall x\Leftrightarrow3\left(x-\frac{5}{6}\right)^2+\frac{23}{12}\ge\frac{23}{12}\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-\frac{5}{6}\right)^2=0\Leftrightarrow x-\frac{5}{6}=0\Leftrightarrow x=\frac{5}{6}\)

Vậy minA = \(\frac{23}{12}\Leftrightarrow x=\frac{5}{6}\)

2, Bạn thử kiểm tra lại đề bài xem

21 tháng 12 2021

Answer:

a) \(\frac{5x}{2x+2}+1=\frac{6}{x+1}\)

\(\Rightarrow\frac{5x}{2\left(x+1\right)}+\frac{2\left(x+1\right)}{2\left(x+1\right)}=\frac{12}{2\left(x+1\right)}\)

\(\Rightarrow5x+2x+2-12=0\)

\(\Rightarrow7x-10=0\)

\(\Rightarrow x=\frac{10}{7}\)

b) \(\frac{x^2-6}{x}=x+\frac{3}{2}\left(ĐK:x\ne0\right)\)

\(\Rightarrow x^2-6=x^2+\frac{3}{2}x\)

\(\Rightarrow\frac{3}{2}x=-6\)

\(\Rightarrow x=-4\)

c) \(\frac{3x-2}{4}\ge\frac{3x+3}{6}\)

\(\Rightarrow\frac{3\left(3x-2\right)-2\left(3x+3\right)}{12}\ge0\)

\(\Rightarrow9x-6-6x-6\ge0\)

\(\Rightarrow3x-12\ge0\)

\(\Rightarrow x\ge4\)

d) \(\left(x+1\right)^2< \left(x-1\right)^2\)

\(\Rightarrow x^2+2x+1< x^2-2x+1\)

\(\Rightarrow4x< 0\)

\(\Rightarrow x< 0\)

e) \(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}\le\frac{x^2}{7}-\frac{2x-3}{5}\)

\(\Rightarrow\frac{2x-3+5\left(x^2-2x\right)}{35}\le\frac{5x^2-7\left(2x-3\right)}{35}\)

\(\Rightarrow2x-3+5x^2-10x\le5x^2-14x+21\)

\(\Rightarrow6x\le24\)

\(\Rightarrow x\le4\)

f) \(\frac{3x-2}{4}\le\frac{3x+3}{6}\)

\(\Rightarrow\frac{3\left(3x-2\right)-2\left(3x+3\right)}{12}\le0\)

\(\Rightarrow9x-6-6x-6\le0\)

\(\Rightarrow3x\le12\)

\(\Rightarrow x\le4\)

\(A=-5x^2-4x+7\)

\(\Leftrightarrow-5A=25x^2+20x-35\)

\(\Leftrightarrow-5A=\left(25x^2+20x+4\right)-39\)

\(\Leftrightarrow-5A=\left(5x+2\right)^2-39\)

Ta có: 

\(\left(5x+2\right)^2-39\ge39\Rightarrow A\le\frac{-39}{5}\)

Dấu '' = '' xảy ra khi: \(x=\frac{-2}{5}\)