K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 12 2023

Lời giải:

$M=(x^2+y^2+2xy)+x^2+y^2-6x-6y+11$

$=(x+y)^2+x^2+y^2-6x-6y+11$

$=(x+y)^2-4(x+y)+4+(x^2-2x+1)+(y^2-2y+1)+5$

$=(x+y-2)^2+(x-1)^2+(y-1)^2+5\geq 0+0+0+5=5$
Vậy $M_{\min}=5$. Giá trị này đạt tại $x+y-2=x-1=y-1=0$

$\Leftrightarrow x=y=1$

24 tháng 12 2019

biet tong cua so thu nhat va so thu hai bang 5,8.Tong cua so thu hai va so thu ba bang 6,7.Tong so thu nhat va so thu ba bang 7,5.Tim moi so do?

9 tháng 3 2020

a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)

Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)

\(\Rightarrow\left(2x-3\right)^2+91\ge91\)

hay A \(\ge91\)

Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)

<=> 2x-3=0

<=> 2x=3

<=> \(x=\frac{3}{2}\)

Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)

b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)

Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x+\frac{1}{2}=0\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)

9 tháng 3 2020

\(C=2x^2+2xy+y^2-2x+2y+2\)

\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)

\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)

Ta có: 

\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)

\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)

hay C\(\ge\)1

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)

Vậy Min C=1 đạt được khi y=1 và x=0

7 tháng 4 2015

\(A=x^2+2xy+2y^2+2x-4y+2013\)

\(=\left(x^2+y^2+1+2x+2y+2xy\right)-1-2y+y^2-4y+2013\)\(=\left(x+y+1\right)^2+\left(y^2-2.y.3+9\right)-9+2012\)

\(=\left(x+y+1\right)^2+\left(y-3\right)^2+2003\)

mà \(\left(x+y+1\right)^2,\left(y-3\right)^2\ge0\)

\(\Rightarrow A=x^2+2xy+2y^2+2x-4y+2013=\left(x+y+1\right)^2+\left(y-3\right)^2+2003\ge2003\)

\(\Rightarrow Min\left(A\right)=2003\)

17 tháng 10 2016

còn thiếu: khi y=3 và x= -y-1

28 tháng 12 2016

\(A=x^2-2xy+y^2+2x-2y+1+y^2-8y+16+2016\)

\(A=\left(x-y\right)^2+2\left(x-y\right)+1+\left(y-4\right)^2+2016\)

\(A=\left(x-y+1\right)^2+\left(y-4\right)^2+2016\)

vì \(\left(x-y+1\right)^2\ge0\)

\(\left(y-4\right)^2\ge0\)

nên \(\left(x-y+1\right)^2+\left(y-4\right)^2+2016\ge2016\)

dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}x=3\\y=4\end{cases}}\)

vậy gtnn của bt là 2016 khi x=3;y=4

đề này của sở giáo dục và đào tạo tỉnh hà nam

27 tháng 12 2016

mk chiu ban ak di thi mk cug vao caau day nhưng ko biet lam

4 tháng 9 2017

ta có \(2B=2x^2-4xy+4y^2+10x\) 

                \(=\left(x^2-4xy+4y^2\right)+\left(x^2+10x+25\right)-25\)

                 \(=\left(x-2y\right)^2+\left(x+5\right)^2-25\)

vì \(\left(x-2y\right)^2>=0;\left(x+5\right)^2>=0\)

=>\(2B>=-25=>b>=-\frac{25}{2}\)

dấu = xảy ra <=> \(\hept{\begin{cases}x=-5\\y=-10\end{cases}}\)

b)   ta có 

\(Q=x^2-6xy+9y^2+x^2-x+\frac{1}{4}+\frac{3}{4}\)

     \(=\left(x-3y\right)^2+\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

=> Q>=3/4

dấu = xảy ra <=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{3}{2}\end{cases}}\)

25 tháng 12 2020

\(A=x^2+2x\left(y+1\right)+\left(y+1\right)^2-\left(y+1\right)^2+2y^2-4y+2028\)

\(=\left(x+y+1\right)^2-y^2-2x-1+2y^2-4y+2028\)

\(=\left(x+y+1\right)^2-6x+y^2+2027\)

\(=\left(x+y+1\right)+\left(y-3\right)^2+2018\ge2018\forall x;y\) (do...)

=> MinA = 2018 \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\y=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=3\end{matrix}\right.\)