K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2018

\(P=x^2-4x+4+y^2-6y+9-8\)

\(=\left(x-2\right)^2+\left(y-3\right)^2-8\ge-8\)

vậy GTNN của P là -8 khi \(x=2;y=3\)

26 tháng 6 2017

Câu b mình viết nhầm dấu \(\ge\)đáng lẽ đúng phải là \(\le\)

26 tháng 6 2017

a)

\(A=x^2+y^2-x+6y+10.\)

\(=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy \(MinA=\frac{3}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y+3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}}\)

b)

\(B=2x-2x^2-5\)

\(=-2\left(x^2-x+\frac{1}{4}\right)+2.\frac{1}{4}-5\)

\(=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)

Vậy \(MaxB=-\frac{9}{2}\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

4 tháng 9 2016

a/ \(M=x^2+y^2-x+6y+10=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+10-\frac{1}{4}-9\)

\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Suy ra Min M = 3/4 <=> (x;y) = (1/2;-3)

b/

1/ \(A=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

Suy ra Min A = 7 <=> x = 2

2/ \(B=x-x^2=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Suy ra Min B = 1/4 <=> x = 1/2

3/ \(N=2x-2x^2-5=-2\left(x^2-x+\frac{1}{4}\right)-5+\frac{1}{2}=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\)

\(\ge-\frac{9}{2}\)

Suy ra Min N = -9/2 <=> x = 1/2

23 tháng 9 2020

C = x2 + 4x + y2 - 6y + 11 ( sửa -y2 => +y2 chứ để như kia không tìm được :)) )

= ( x2 + 4x + 4 ) + ( y2 - 6y + 9 ) - 2

= ( x + 2 )2 + ( y - 3 )2 - 2 ≥ -2 ∀ x, y

Đẳng thức xảy ra <=> x = -2 ; y = 3

=> MinC = -2 <=> x = -2 ; y = 3

23 tháng 9 2020

Sửa đề C = - x2 - 4x - y2 - 6y + 11

<=> C = - ( x2 + 4x + 4 ) - ( y2 + 6y + 9 ) + 24

<=> C = \(-\left(x+2\right)^2-\left(y+3\right)^2+16\le16\)

Dấu "=" xảy ra <=> \(\orbr{\begin{cases}-\left(x+2\right)^2=0\\-\left(y+3\right)^2=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\y=-3\end{cases}}\)

Vậy maxC = 24 <=> x = - 2 ; y = - 3

17 tháng 7 2018

\(P=x^2-4x+y^2-6y+5=\left(x^2-4x+4\right)+\left(y^2-6y+9\right)-4-9+5=\left(x-2\right)^2+\left(y-3\right)^2-8\ge-8\)

Vậy P đạt gtnn bằng -8 \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)

21 tháng 7 2018

(mượn mặt bằng)

source: Đề thi và đáp án vào lớp 10 trường chuyên Phan Bội Châu năm học 2017-2018

Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung

28 tháng 12 2015

\(4x-x^2-12=-x^2+4x-4-8=-\left(x-4x+4\right)-8=-\left(x-2\right)^2-8\le8\)

=> GTLN của đa thức là 8

<=> x-2 = 0

<=> x = 2

\(x^2+y^2-x+6y+15\)

\(=x^2-2.x.\frac{1}{2}+\frac{1}{4}+y^2+2.y.3+9+\frac{23}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{23}{4}\ge\frac{23}{4}\)

=> GTNN của đa thức là 23/4

<=> x-1/2=0 và y+3=0

<=> x=1/2 và y=-3

15 tháng 2 2020

\(x^2+2xy+6x+6y+2y^2+8=0\)

\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+9=1-y^2\)

\(\Leftrightarrow\left(x+y+3\right)^2=1-y^2\)

Ta thấy : \(1-y^2\le1\forall y\) \(\Rightarrow\left(x+y+3\right)^2\le1\)

\(\Rightarrow-1\le x+y+3\le1\)

\(\Rightarrow-1+2013\le x+y+3+2013\le1+2013\)

\(\Rightarrow2012\le x+y+2016\le2014\)

Vậy ta có : 

+) Min \(B=2012\) . Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}y=0\\x+y+3=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}y=0\\x=-4\end{cases}}\)

+) Max \(M=2014\). Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}y=0\\x+y+3=1\end{cases}\Leftrightarrow}\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

14 tháng 7 2017

b) \(M=\frac{x^2+1}{x-1}=\frac{x^2-1}{x-1}+\frac{2}{x-1}=\frac{\left(x-1\right)\left(x+1\right)}{x-1}+\frac{2}{x-1}=x+1+\frac{2}{x-1}\)

Áp dụng bđt Cô si cho 2 số dương ta được: \(x-1+\frac{2}{x-1}\ge2\sqrt{\left(x-1\right).\frac{2}{x-1}}=2\sqrt{2}\)

=>\(M=x+1+\frac{2}{x-1}\ge2\sqrt{2}+2\)

Dấu  "=" xảy ra khi \(x=\sqrt{2}+1\)

c) \(N=\left(x-1\right)\left(x+5\right)\left(x^2+4x+5\right)=\left(x^2+4x-5\right)\left(x^2+4x+5\right)=\left(x^2+4x\right)^2-25\)

\(\left(x^2+4x\right)^2\ge0\Rightarrow\left(x^2+4x\right)^2-25\ge-25\)

Dấu "=" xảy ra khi (x2+4x)2=0 <=> x2+4x=0 <=> x(x+4)=0 <=> x=0 hoặc x=-4

24 tháng 10 2016

\(B=x^2-4x+5\)

\(=x^2-2.x.2+2^2+1\)

\(=\left(x+2\right)^2+1\)

Ta có : \(\left(x+2\right)^2\ge0\)

\(\left(x+2\right)^2+1\ge1\)

Dấu " = " xảy ra khi và chỉ khi \(x+2=0\)

\(\Leftrightarrow x=-2\)

Vậy \(Min_A=1\Leftrightarrow x=-2\)

6 tháng 3 2017

bài này sai sao vẫn được hoc24 chọn