K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2022

Ta có\(A=2x^2-6x=2\left(x^2-3x\right)=2\left(x^2-2.\dfrac{3}{2}x+\dfrac{9}{4}-\dfrac{9}{4}\right)\)

\(=2\left[\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\right]=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\)

Vì: \(\left(x-\dfrac{3}{2}\right)^2\ge0\) Nên \(\left(x-\dfrac{3}{2}\right)^2\ge0\Rightarrow2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge\dfrac{-9}{2}\)

=> \(A=-\dfrac{9}{2}\) là giá trị nhỏ nhất khi \(\left(x-\dfrac{3}{2}\right)^2=0\Rightarrow x=\dfrac{3}{2}\)

Vậy \(A=-\dfrac{9}{2}\) là giá trị nhỏ nhất của đa thức khi \(x=\dfrac{3}{2}\)

13 tháng 8 2022

chịu ạ e lớp 5

9 tháng 1 2017

ta có 

P = 2x^2 - 6x 

= 2( x^2 - 3x + 9/4) - 9/4

= 2( x-3/2)^2 - 9/4 

nhận xét 2(x-3/2)^2 >=0 

=> 2(x-3/2)^2 - 9/4 >=-9/4

dấu = xảy ra khi và chỉ khi 

x- 3/2 = 0 

=> x= 3/2

9 tháng 1 2017

4x - x^2 + 3 

= -x^2 + 4x - 4 +7

= -(x^2 - 4x + 4) + 7 

= -(x-2)^2 + 7 

nhận xét -(x-2)^2 <=0 

=> -(x-2)^2 + 7 <=7 

đấu = xảy ra khi và chỉ khi 

x-2 = 0 

=> x= 2

26 tháng 7 2016

2x^2-6x+1

\(=2\left(x^2-3x+\frac{1}{2}\right)\)

\(=2\left(x^2-3x+\frac{9}{4}\right)-\frac{7}{2}\)

\(=2\left(x-\frac{3}{2}\right)^2-\frac{7}{2}\ge0-\frac{7}{2}=-\frac{7}{2}\)

Dấu = khi 2(x-3/2)2=0 <=>x=3/2

Vậy Hmin=7/2 khi x=3/2

26 tháng 7 2016

\(2x^2-6x+1=2\left(x^2-3x+\frac{1}{2}\right)\)

\(=2\left[x^2+2.\frac{3}{2}.x+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+\frac{1}{2}\right]\)

\(=2\left[\left(x+\frac{3}{2}\right)^2-\frac{7}{4}\right]\)

\(=2\left(x+\frac{3}{2}\right)^2-\frac{7}{2}\ge-\frac{7}{2}\)

Vậy Min đề = -7/2 khi x + 3/2 = 0 => x = -3/2

1 tháng 11 2019

A = 2x+ 6x - 1

A = 2( x+ 3x - 1 / 2 )

A = 2[ x+ 2 . 3 / 2 . x + ( 3 / 2 )2 - ( 3 / 2 )- 1 / 2 ]

A = 2[ ( x + 3 / 2 )- 11 / 4 ]

A = ( x + 3 / 2 )- 11 / 2 \(\ge\)- 11 / 2

Dấu " = " xảy ra\(\Leftrightarrow\)x + 3 / 2 = 0

                            \(\Rightarrow\)x              = 3 / 2

Min A = - 11 / 2 \(\Leftrightarrow\)x = 3 / 2

17 tháng 2 2017

\(A=2x^2+y^2+2xy-6x-2y+10\)

<=>\(A=y^2+2y\left(x-1\right)+2x^2-6x+10\)

<=>\(A=y^2+2y\left(x-1\right)+\left(x^2-2x+1\right)+\left(x^2-4x+4\right)+5\)

<=>\(A=y^2+2y\left(x-1\right)+\left(x-1\right)^2+\left(x-2\right)^2+5\)

<=>\(A=\left(y+x-1\right)^2+\left(x-2\right)^2+5\ge5\)

=> A đạt giá trị nhỏ nhất là 5 khi \(\hept{\begin{cases}\left(y+x-1\right)^2=0\\\left(x-2\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y+x-1=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=-1\end{cases}}\)

21 tháng 7 2017

anh ko biết nha em yêu của anh

23 tháng 7 2017

\(A=2x^2+9y^2-6xy-6x-12y+2046\)

\(=\left[\left(x^2-6xy+9y^2\right)+\left(4x-12y\right)+4\right]-4+\left(x^2-10x+25\right)-25+2046\)

\(=\left[\left(x-3y\right)^2+4\left(x-3y\right)+4\right]+\left(x-5\right)^2-4-25+2046\)

\(=\left(x-3y+2\right)^2+\left(x-5\right)^2+2017\ge2017\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-3y+2=0\\x-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{7}{3}\\x=5\end{cases}}}\)

Vậy \(A_{min}=2017\) tại \(x=5;y=\frac{7}{3}\)

26 tháng 11 2016

A= 2X^2- 6X

   = 2(X^2- 3X+ 9/4-9/4)

    =2[( X-3/2)^2-9/4]

     =2(X-3/2)^2 - 9/2

VÌ 2(X-3/2)^2 >= 0 VỚI MỌI X

=> 2(X-3/2)^2 - 9/2 >= -9/2

DẤU " = " XẨY RA KHI VÀ CHỈ KHI

X-3/2=0

=> X=3/2

VẬY GTNN CỦA A LÀ -9/2 TẠI X= 3/2

5 tháng 11 2017

Ta thấy A gồm có 99 số hạng nên ta nhóm mỗi nhóm 3 số hạng.

Ta có: A = 1 + 5 + 52 + 53 + 54 + 55 +...+ 597 + 598 + 599

             = (1 + 5 + 52 )+ (53 + 54 + 55 )+...+( 597 + 598 + 599 )

             =(1 + 5 + 52 )+ 53(1 + 5 + 52 ) +...+ 597(1 + 5 + 52 )

             = ( 1 + 5 + 52)(1 + 53+....+597)

             = 31(1 + 53+....+597)

Vì có một thừa số là 31 nên A chia hết cho 31.

 P/s Đừng để ý câu trả lời của mình

23 tháng 10 2020

A = x2 - 2x + 9 = ( x2 - 2x + 1 ) + 8 = ( x - 1 )2 + 8 ≥ 8 ∀ x

Dấu "=" xảy ra khi x = 1

=> MinA = 8 <=> x = 1

B = x2 + 6x - 3 = ( x2 + 6x + 9 ) - 12 = ( x + 3 )2 - 12 ≥ -12 ∀ x

Dấu "=" xảy ra khi x = -3

=> MinB = -12 <=> x = -3

C = ( x - 1 )( x - 3 ) + 9 = x2 - 4x + 3 + 9 = ( x2 - 4x + 4 ) + 8 = ( x - 2 )2 + 8 ≥ 8 ∀ x

Dấu "=" xảy ra khi x = 2

=> MinC = 8 <=> x = 2

D = -x2 - 4x + 7 = -( x2 + 4x + 4 ) + 11 = -( x + 2 )2 + 11 ≤ 11 ∀ x

Dấu "=" xảy ra khi x = -2

=> MaxD = 11 <=> x = -2

27 tháng 10 2020

hello, cần lm j z?

18 tháng 3 2018

\(A=\frac{2x^2-6x+5}{x^2-2x+1}=\frac{x^2-4x+4+x^2-2x+1}{x^2-2x+1}\)

\(=\frac{\left(x-2\right)^2+\left(x-1\right)^2}{\left(x-1\right)^2}=\frac{\left(x-2\right)^2}{\left(x-1\right)^2}+1\)

Vì \(\hept{\begin{cases}\left(x-2\right)^2\ge0\\\left(x-1\right)^2\ge0\end{cases}}\)\(\Rightarrow\frac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge0\)\(\Rightarrow\frac{\left(x-2\right)^2}{\left(x-1\right)^2}+1\ge1\)

\(\Rightarrow A\ge1\).Nên GTNN của \(A=1\) đạt được khi \(x=2\)

20 tháng 3 2018

dòng thứ 2 ko hiểu