K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\left|x-2011\right|+\left|x-200\right|\)

\(=\left|2011-x\right|+\left|x-200\right|\ge\left|2011-x+x-200\right|=1811\)

Vậy \(MinA=1811\Leftrightarrow\left(2011-x\right)\left(x-200\right)\ge0\Leftrightarrow200\le x\le2011\)

3 tháng 2 2017

A=|x-2011|+|x-200|

Vậy A đạt giá trị nhỏ nhất là

A=1811 với x={200;201;202;203;...2009;2010;2011}

3 tháng 2 2017

theo đề bài ta có 

A=|X-2011|+|X-200|=|X-2011|+|200-X| LỚN HƠN HOẶC BẰNG |X-2011+200-X| =2010

VẬY GTNN CỦA BIỂU THỨC LÀ 2000 khi X-2011 VÀ 200-X  phải cung dau

20 tháng 8 2019

Ta có: A = |x - 2011| + |x - 200|

=> A = |x - 2011| + |200 - x| \(\ge\)|x - 2011 + 200  - x| = |-1811| = 1811

Dấu "=" xảy ra <=> (x - 2011)(200 - x) \(\ge\)0

=> \(200\le x\le2011\)

Vậy MinA = 1811 <=> \(200\le x\le2011\)

Ta có: B = |x - 2015| + |x - 2013|

=> B = |x - 2015| + |2013 - x| \(\ge\)|x - 2015 + 2013 - x| = |-2| = 2

Dấu "=" xảy ra <=> (x - 2015)(2013 - x) \(\ge\)0

=> \(2013\le x\le2015\)

vậy MinB = 2 <=> \(2013\le x\le2015\)

6 tháng 10 2019

Ta có : \(\left|x-2011\right|\ge0;\left|x-200\right|\ge0\)

            =>|x-2011|+|x-200|\(\ge0\)

            =>A\(\ge0\)

Dấu bằng xảy ra <=> x-2011=0<=>x=2011

                                  x-200=0<=>x=200

Vậy Amin=0<=>x\(\in\left\{2011;200\right\}\)

4 tháng 3 2020

https://olm.vn/hoi-dap/detail/71139997691.html

Bạn tham khảo link này

4 tháng 3 2020

A = |x - 2011| + |x - 200|

|x - 2011| > 2011 - x

|x - 200| > x - 200

=> A > 2011 - x + x - 200

=> A > 1811

dấu "=" xảy ra khi : 

|\(\hept{\begin{cases}x-2011< 0\\x-200\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x< 2011\\x\ge200\end{cases}}\)

vậy  Min A = 1811 khi 200 < x < 2011

mjnh không chắc vì mjnh kém dạng này :v

15 tháng 10 2018

\(A=|x+100|+|x+200|+|x+300|+|x+400|+2011\)

\(\ge|x+100+x+200+x+300+x+400|+2011\)

\(=|4x+1000|+2011\)

Dấu bằng xảy ra khi và chỉ khi \(4x+1000=0\Leftrightarrow x=-250\)

=> Min A= 2011

15 tháng 10 2018

\(\left|x+100\right|+\left|x+200\right|+\left|x+300\right|+\left|x+400\right|+2011\ge\left|x+100+x+200+x+300+x+400\right|+2011=\left|4x+\left(100+200+300+400\right)\right|+2011\)\(\Rightarrow\left|x+100\right|+\left|x+200\right|+\left|x+300\right|+\left|x+400\right|\ge\left|4x+1000\right|+2011\)

\(\Rightarrow A_{Min}=2011\Leftrightarrow\left|4x+1000\right|=0\Leftrightarrow4x+1000=0\Leftrightarrow4x=-1000\Leftrightarrow x=-250\)

30 tháng 11 2015

ta có

A=/x-2011/ + /x-1/=/x-2011/+/1-x/

áp dụng bất đẳng thức /A/+/B/ \(\ge\)/A+B/

=>A =/x-2011/+/1-x/\(\ge\)   /x-2011+1-x/=2010

5 tháng 10 2017

\(A=\left|x-2011\right|+\left|x-2\right|\)

\(\Rightarrow\left|x-2\right|\ge0\)

\(\Rightarrow Min_A=0\)khi \(x=2011\)hoặc 2