Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(a-1=x>0,b-1=y>0\), ta có
\(A=\frac{\left(x+1\right)^2}{x}+\frac{\left(y+1^2\right)}{y}=\frac{x^2+2x+1}{x}+\frac{y^2+2y+1}{y}\)
\(=\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)+4\)
Với \(x>0,y>0\)ta có \(x+\frac{1}{x}\ge2,y+\frac{1}{y}\ge2\)nên \(A\ge8\)
\(Min_A=8\Leftrightarrow x=y=1\Leftrightarrow a=b=2\)
P/s tham khảo nha
Sử dụng \(AM-GM\)ta có :
\(\frac{a^2}{a-1}+4\left(a-1\right)\ge2\sqrt{\left(2a\right)^2}=4a\)
Tương tự : \(\frac{b^2}{b-1}+4\left(b-1\right)\ge4b\)
Cộng theo vế : \(A+4\left(a+b\right)-8\ge4\left(a+b\right)\)
\(< =>A\ge8\)
Dấu = xảy ra \(< =>a=b=2\)
Ta có:
\(A=\frac{a^2}{b-1}+\frac{b^2}{a-1}\ge2\sqrt{\frac{a^2}{b-1}.\frac{b^2}{a-1}}\)
\(=2.\frac{a}{\sqrt{a-1}}.\frac{b}{\sqrt{b-1}}\)
Vì \(\frac{a}{\sqrt{a-1}}\ge2;\frac{b}{\sqrt{b-1}}\ge2\Rightarrow A\ge8\)
=> min A=8 <=> a=b=2
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(A=\frac{a^2}{b-1}+\frac{b^2}{a-1}\ge\frac{\left(a+b\right)^2}{a+b-2}\)
Đặt a + b - 2 = x => x > 0
Khi đó \(A\ge\frac{\left(a+b\right)^2}{a+b-2}=\frac{\left(x+2\right)^2}{x}=\frac{x^2+4x+4}{x}=\left(x+\frac{4}{x}\right)+4\ge2\sqrt{x\cdot\frac{4}{x}}+4=8\)( AM-GM )
Đẳng thức xảy ra <=> x = 2 => a=b=2
Vậy MinA = 8 <=> a=b=2
Ta có
\(M=\left(1+a\right)\left(1+\frac{1}{b}\right)+\left(1+b\right)\left(1+\frac{1}{a}\right)=2+\frac{a}{b}+\frac{b}{a}+a+b+\frac{1}{a}+\frac{1}{b}\)
\(\ge2+2+a+b+\frac{4}{a+b}\)
\(=4+a+b+\frac{2}{a+b}+\frac{2}{a+b}\)
\(\ge4+2\sqrt{\left(a+b\right).\frac{2}{\left(a+b\right)}}+\frac{2}{\sqrt{2\left(a^2+b^2\right)}}\)
\(=4+2\sqrt{2}+\sqrt{2}=4+3\sqrt{2}\)
Phá tung ngoặc
\(A=\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2\)
\(=a^2+2+\frac{1}{a^2}+b^2+2+\frac{1}{b^2}\)
\(=a^2+b^2+\frac{1}{a^2}+\frac{1}{b^2}+4\)
\(\ge a^2+b^2+\frac{4}{a^2+b^2}+4\)
Đặt \(x=a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=\frac{1}{2}\)
Làm nốt
Áp dụng bđt Bunhiacopski ta có
\(A=\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2=\frac{\left(a+\frac{1}{a}\right)^2}{1}+\frac{\left(b+\frac{1}{b}\right)^2}{1}\ge\frac{\left(a+b+\frac{1}{a}+\frac{1}{b}\right)^2}{2}=\frac{\left(1+\frac{1}{a}+\frac{1}{b}\right)^2}{2}\)
mà \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}=4\)
\(\Rightarrow A\ge\frac{\left(1+4\right)^2}{2}=\frac{25}{2}\)
Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)
Mới thi hk1 bài nãy _._
Ta thấy: \(a+b\le1\Leftrightarrow\hept{\begin{cases}a\le1-b\\b\le1-a\end{cases}}\Leftrightarrow\hept{\begin{cases}1+a\le2-b\\1+b\le2-a\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{1+b}\ge\frac{a}{2-a}\\\frac{b}{1+a}\ge\frac{b}{2-b}\end{cases}}\Rightarrow\frac{a}{1+b}+\frac{b}{1+a}\ge\frac{a}{2-a}+\frac{b}{2-b}\)
\(\Rightarrow S=\frac{a}{1+b}+\frac{b}{1+a}+\frac{1}{a+b}\ge\frac{a}{2-a}+\frac{b}{2-b}+\frac{1}{a+b}\)
\(=\frac{2}{2-a}-1+\frac{2}{2-b}-1+\frac{1}{a+b}=\frac{2}{2-a}+\frac{2}{2-b}+\frac{1}{a+b}-2\)
\(=2\left(\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2\left(a+b\right)}-1\right)\)
Áp dụng bất đẳng thức sau: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)
\(\Rightarrow\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2\left(a+b\right)}\ge\frac{9}{4-\left(a+b\right)+2\left(a+b\right)}=\frac{9}{4+a+b}\)
Lại có: \(a+b\le1\Rightarrow4+a+b\le5\Rightarrow\frac{9}{4+a+b}\ge\frac{9}{5}\)
\(\Rightarrow\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2\left(a+b\right)}\ge\frac{9}{5}\Leftrightarrow2\left(\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2\left(a+b\right)}-1\right)\ge\frac{8}{5}\)
\(\Rightarrow S\ge\frac{8}{5}.\)
Vậy \(Min_S=\frac{8}{5}.\)Dấu "=" xảy ra khi \(a=b=\frac{2}{5}.\)