Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dungk KT \(\left|x\right|\ge0\)\(\forall\)\(x\)
BG :
Ta có : \(\left|x-2\right|\ge0\)\(\forall\)\(x\); \(4\ge0\)
nên : \(4\left|x-2\right|\ge0\)\(\forall\)\(x\)
\(\Rightarrow\)\(10-4\left|x-2\right|\ge10-0\)\(\forall\)\(x\)
\(\Rightarrow\)\(10-4\left|x-2\right|\ge10\)\(\forall\)\(x\)
Để \(10-4\left|x-2\right|\)đạt GTLN thì \(\Leftrightarrow\)\(4\left|x-2\right|\)đạt giá trị nhỏ nhất
\(\Leftrightarrow\)\(4\left|x-2\right|=0\)
\(\Leftrightarrow\)\(x-2=0\)
\(\Leftrightarrow\)\(x=2\)
Vậy GTLN của B đạt được \(=10\)khi \(x=2\)
Ta có 10x + 15 = 10x + 2 +13
để A nhận giá trị là số nguyên thì 10x+15 chia hết cho 5x+1 hay 10x+2+13 chia hết cho 5x+1 mà 10x+2 chia hết cho 5x+1 nên 13 chia hết cho 5x+1 suy ra 5x+1 thuộc Ư(13)
ma U(13) = {-13;-1;1;13} suy ra 5x + 1 thuoc { -13;-1;1;13}
vì x nguyên nên ta có bảng sau
5x+1 | -13 | -1 | 1 | 13 |
x | -14/5 | -2/5 | 0 | 12/5 |
n/xét | loai | loai | chon | loai |
vậy với x = 0 thì A nhận giá tri nguyên
Ta có 10x + 15 = 10x + 2 +13
để A nhận giá trị là số nguyên thì 10x+15 chia hết cho 5x+1 hay 10x+2+13 chia hết cho 5x+1 mà 10x+2 chia hết cho 5x+1 nên 13 chia hết cho 5x+1 suy ra 5x+1 thuộc Ư(13)
ma U(13) = {-13;-1;1;13} suy ra 5x + 1 thuoc { -13;-1;1;13}
vì x nguyên nên ta có bảng sau
5x+1 | -13 | -1 | 1 | 13 |
x | -14/5 | -2/5 | 0 | 12/5 |
n/xét | loai | loai | chon | loai |
vậy với x = 0 thì A nhận giá tri nguyên
1. ta có
\(3^{x+2}+4.3^{x+1}+3^{x-1}\)=66
\(3^x.3+3^x.3.4+3^x:3\)=66
3x.3+3x.12+3x.1/3=66
3x.(3+12+1/3)=66
3x.64/3=66
3x=66:64/3
3x=2187
3x=37
=> x=7
2.\(\frac{x}{3}=\frac{y}{4}=>\frac{x}{9}=\frac{y}{12}\) (cung nhân cả hai phân số với 1/3)
\(\frac{y}{6}=\frac{z}{8}=>\frac{y}{12}=\frac{z}{16}\) (cùng nhân cả hai phân số với 1/2)
từ đây suy ra
a) \(A=\dfrac{3}{x-1}\)
Điều kiện \(|x-1|\ge0\)
\(\Rightarrow A=\dfrac{3}{x-1}\ge0\)
\(GTNN\left(A\right)=0\) \(\Rightarrow x-1=+\infty\Rightarrow x\rightarrow+\infty\)
b) \(GTLN\left(A\right)\) không có \(\left(A=\dfrac{3}{x-1}\ge0\right)\)
bài 2
Ta có:
\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)
Trường hợp 1: \(x-102>0\Rightarrow x>102\)
\(2-x>0\Rightarrow x< 2\)
\(\Rightarrow102< x< 2\left(loại\right)\)
Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)
\(2-x< 0\Rightarrow x>2\)
\(\Rightarrow2< x< 102\left(nhận\right)\)
Vậy GTNN của A là -100 đạt được khi 2<x<102.
a, Ta có :
\(A=\frac{2}{6-x}\). Để A có GTLN => 6 - x có GTNN và 6 - x > 0
Mà \(6-x\ne0\Rightarrow6-x=1\Rightarrow x=5\)
\(\Rightarrow A=\frac{2}{1}=2\) khi x = 5
b, \(B=\frac{8-x}{x-3}=\frac{-\left(x-3\right)+5}{x-3}=-1+\frac{5}{x-3}\)
Để B có GTNN \(\Rightarrow\frac{5}{x-3}\) có GTNN => x-3 có GTNN và x - 3 < 0
Mà \(x-3\ne0\Rightarrow x-3=-1\Rightarrow x=2\)
\(\Rightarrow B=-1+\frac{5}{-1}=-6\) khi x = 2