Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=x^2-4x+5\)
\(=x^2-4x+4+1\)
\(=\left(x-2\right)^2+1\ge1\forall x\)
Dấu"=" xảy ra<=> \(\left(x-2\right)^2=0\Leftrightarrow x=2\)
Vậy.....
Bài 1 : A=\(-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}-\frac{1}{4}\right)\)
A=\(-\left(x-\frac{1}{2}\right)^2-\frac{1}{4}< \)hoặc bằng -1/4 Vậy A max =1/4 khi x=1/2
\(1;a,A=x^2+20x+101\)
\(A=x^2+2.10x+10^2+1\)
\(A=\left(x+10\right)^2+1\ge1\)
Dấu "=" xảy ra khi x = -10
Vậy Min A = 1 <=> x = -10
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
a) A= 2x2-8x+10 = 2(x-2)2+2\(\ge\)2\(\Leftrightarrow\)x=2
Vậy MinA=2 \(\Leftrightarrow\)x=2
b) B= -(x-1)2-(2y+1)2+7 \(\le\)7
Dấu = xảy ra khi x=1 và y=\(\frac{-1}{2}\)
Vậy MaxB=7 ....
a)\(A=x^2+6x+15\)
\(A=x^2+6x+3^2-3^2+15\)
\(A=\left(x+3\right)^2+6\)
Vì \(\left(x+3\right)^2\ge0\) với mọi x nên (x+3)2+6>0 với mọi x
b) A có giá trị nhỏ nhất
A=(x+3)2+6
=> Amin=6<=>(x+3)2=0<=>x=-3
Vậy: Gtnn của A là 6 khi x= -3
1/ B = (x+y)((x+y)2 - 3xy)+(x+y)2 - 2xy = 2 - 5xy = 2 - 5x(1-x)=5x2 - 5x + 2 = (x√5 - √5 /2)2 +3/4 >= 3/4
Đạt GTNN là 3/4 khi x=y=1/2
2/ P = xy = x(6-x)=-x2 +6x = 9 - (x-3)2 <=9
GTLN là 9 khi x=y=3
Ta có: A = -3 - x2 - x = -(x2 + x + 1/4) - 11/4 = -(x + 1/2)2 - 11/4
Ta luôn có: -(x + 1/2)2 \(\le\)0 \(\forall\)x
=> -(x + 1/2)2 - 11/4 \(\le\)-11/4 \(\forall\)x
Dấu "=" xảy ra khi: x + 1/2 = 0 <=> x = -1/2
Vậy Max của A = -11/4 tại x = -1/2
\(A=-3-x^2-x=-\left(x^2+x+3\right)=-\left[\left(x+\frac{1}{2}\right)^2+\frac{11}{4}\right]\)
Lại có : \(\left(x+\frac{1}{2}\right)^2\ge0=>A\le\frac{11}{4}\)
Dấu "=" xảy ra khi \(x+\frac{1}{2}=0=>x=-\frac{1}{2}\)
Vậy \(A_{max}=\frac{11}{4}\)khi \(x=-\frac{1}{2}\)