Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : A=\(-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}-\frac{1}{4}\right)\)
A=\(-\left(x-\frac{1}{2}\right)^2-\frac{1}{4}< \)hoặc bằng -1/4 Vậy A max =1/4 khi x=1/2
Ta có: A = 4x2 + y2 + 4x - 4y - 3 = (4x2 + 4x + 1) + (y2 - 4y + 4) - 10 = (2x + 1)2 + (y - 2)2 - 10
Ta luôn có: (2x + 1)2 \(\ge\)0 \(\forall\)x
(y - 2)2 \(\ge\)0 \(\forall\)y
=> (2x + 1)2 + (y - 2)2 - 10 \(\ge\) -10 \(\forall\)x;y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x+1=0\\y-2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-\frac{1}{2}\\y=2\end{cases}}\)
Vậy MinA = -10 <=> x = -1/2 và y = 2
B = x2 + 4y2 - 4x + 4y + 3 = (x2 - 4x + 4) + (4y2 + 4y + 1) - 2 = (x - 2)2 + (2y + 1)2 - 2
còn lại tương tự
Q = -4x2 + 4x + 3 = - (4x2 - 4x - 3) = - [(2x)2 - 2 . 2x + 1 - 4] = - [(2x - 1)2 - 4] = - (2x - 1)2 + 4 \(\le\)4
Đẳng thức xảy ra khi: -(2x - 1)2 = 0 => x = 0,5
Vậy giá trị lớn nhất của Q là 4 khi x = 0,5.
2.) A=x2-6x+15=(x-3)2+6
Vì (x-3)2>=0 với mọi x
=> (x-s)2+6>=6 với mọi x
hay A>=6 với mọi x
Dấu = xảy ra <=> x-3=0 <=> x=3
Vậy....
B=x2+4y2-4x+4y+15 = (x2-4x+4)+(4y2+4y+1)+10= (x-2)2+(2y+1)2+10
vì (x-2)2 >= 0 với mọi x ; (2y+1)2>=0 với mọi y
6>0
=> (x-2)2+(2y+1)2 + 6>=6 với mọi x;y
hay B>=6 với mọi x;y
Dấu = xảy ra <=> x-2=0 và 2y+1=0
<=> x=2 và y=-1/2
Vậy....
3) A= -x2+4x+3= -(x2-4x+4)+7 = -(x-2)2+7
vì -(x-2)2<=0 với mọi x
=> -(x-2)2+7<=7 với mọi x
hay A<=7 với mọi x
Dấu = xảy ra <=> x-2=0 <=> x=2
Vậy....
B=-x2-9y2+2x-6y+5= -(x2-2x+1)-(9y2+6y+1)+7 = -(x-1)2-(3y+1)2+7
vì -(x-1)2<=0 với mọi x
-(3y+1)2<=0 với mọi y
suy ra: -(x-1)2-(3y+1)2<=0 với mọi x;y
=> -(x-1)2-(3y+1)2+7<=7 với mọi x;y
hay A<=7 với mọi x, y
Dấu = xảy ra <=> x-1=0 và 3y+1=0
<=> x=1 và y=-1/3
vậy...
GTNN :
B=4x2+4x+11
= (2x)2+2*x*2+22+7
=(2x+2)2+7>= 7
dấu ''='' sảy ra khi 2x+2=0
=> x = -1
vậy GTNN của biểu thức B là 7 tại x = -1
\(B=4x^2+4x+11\)
\(=4x^2+4x+1+10\)
\(=\left(2x+1\right)^2+10\ge10\)
Dau "=" xay ra <=> \(x=-\frac{1}{2}\)
Vay.....
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
1, \(3x^2-5x+4\)
\(=3\left(x^2-\frac{5}{3}x\right)+1=3\left(x^2-2.\frac{5}{6}x+\frac{25}{36}\right)+\frac{23}{12}=3\left(x-\frac{5}{6}\right)^2+\frac{23}{12}\)
Ta có: \(3\left(x-\frac{5}{6}\right)^2\ge0\forall x\Leftrightarrow3\left(x-\frac{5}{6}\right)^2+\frac{23}{12}\ge\frac{23}{12}\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-\frac{5}{6}\right)^2=0\Leftrightarrow x-\frac{5}{6}=0\Leftrightarrow x=\frac{5}{6}\)
Vậy minA = \(\frac{23}{12}\Leftrightarrow x=\frac{5}{6}\)
2, Bạn thử kiểm tra lại đề bài xem
\(P=x^2-4x+5\)
\(=x^2-4x+4+1\)
\(=\left(x-2\right)^2+1\ge1\forall x\)
Dấu"=" xảy ra<=> \(\left(x-2\right)^2=0\Leftrightarrow x=2\)
Vậy.....