Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có:2015 - x2 = -(x2-2015)
mà x2-2015 lớn hơn hoặc bằng -2015
suy ra -(x2-2015) nhỏ hơn hoặc bằng 2015
dấu = xảy ra khi và chỉ khi x2=0 khi và chỉ khi x=0 vậy giá trị lớn nhất là 2015 khi và chỉ khi x=0
Bài 1:
|\(x\)| = 1 ⇒ \(x\) \(\in\) {-\(\dfrac{1}{3}\); \(\dfrac{1}{3}\)}
A(-1) = 2(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)) + 5
A(-1) = \(\dfrac{2}{9}\) + 1 + 5
A (-1) = \(\dfrac{56}{9}\)
A(1) = 2.(\(\dfrac{1}{3}\) )2- \(\dfrac{1}{3}\).3 + 5
A(1) = \(\dfrac{2}{9}\) - 1 + 5
A(1) = \(\dfrac{38}{9}\)
|y| = 1 ⇒ y \(\in\) {-1; 1}
⇒ (\(x;y\)) = (-\(\dfrac{1}{3}\); -1); (-\(\dfrac{1}{3}\); 1); (\(\dfrac{1}{3};-1\)); (\(\dfrac{1}{3};1\))
B(-\(\dfrac{1}{3}\);-1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).(-1) + (-1)2
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) - 1 + 1
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\)
B(-\(\dfrac{1}{3}\); 1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).1 + 12
B(-\(\dfrac{1}{3};1\)) = \(\dfrac{2}{9}\) + 1 + 1
B(-\(\dfrac{1}{3}\); 1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3};-1\)) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).(-1) + (-1)2
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) + 1 + 1
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3}\); 1) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).1 + (1)2
B(\(\dfrac{1}{3}\); 1) = \(\dfrac{2}{9}\) - 1 + 1
B(\(\dfrac{1}{3}\);1) = \(\dfrac{2}{9}\)
a.
Ta có: \(\left(x-1\right)^2\ge0\forall x\\ \Rightarrow\left(x-1\right)^2-\frac{1}{3}\ge-\frac{1}{3}\forall x\)
Vậy \(A_{Min}=-\frac{1}{3}\) \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
a) \(A=-\frac{1}{3}+\left(x-1\right)^2\)
Ta có: \(\left(x-1\right)^2\ge0\) với mọi \(x\)
\(\Rightarrow-\frac{1}{3}+\left(x-1\right)^2\ge-\frac{1}{3}\) với mọi \(x\)
\(\Leftrightarrow A\ge-\frac{1}{3}\)
Dấu \("="\) xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\) \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy \(MinA=-\frac{1}{3}\Leftrightarrow x=1\).
b) \(B=5-2\left(3x-1\right)^4\)
Ta có: \(\left(3x-1\right)^4\ge0\) với mọi \(x\)
\(\Leftrightarrow-2\left(3x-1\right)^4\le0\) với mọi \(x\)
\(\Rightarrow5-2\left(3x-1\right)^4\le5\) với mọi \(x\)
\(\Leftrightarrow B\le5\)
Dấu \("="\) xảy ra \(\Leftrightarrow\left(3x-1\right)^4=0\Leftrightarrow3x-1=0\Leftrightarrow3x=1\Leftrightarrow x=\frac{1}{3}\)
Vậy \(MaxB=5\Leftrightarrow x=\frac{1}{3}\).
c) \(C=\left(x+1\right)^2+\left|y-5\right|-2\)
Ta có: \(\left(x+1\right)^2\ge0\) với mọi \(x\)
\(\left|y-5\right|\ge0\) với mọi \(y\)
\(\Rightarrow\left(x+1\right)^2+\left|y-5\right|-2\ge-2\) với mọi \(x,y\)
\(\Leftrightarrow C\ge-2\)
Dấu \("="\) xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)^2=0\\\left|y-5\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=5\end{matrix}\right.\)
Vậy \(MinC=-2\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=5\end{matrix}\right.\).
bài 1:
|x| = \(\dfrac{1}{3}\) => x = \(\pm\)\(\dfrac{1}{3}\) |y| = 1 => y = \(\pm\)1
a
+) A = 2x\(^2\) - 3x + 5
= 2\(\left(\dfrac{1}{3}\right)^2\) - 3.\(\dfrac{1}{3}\) +5 = 2.\(\dfrac{1}{9}\) - 1 + 5
= \(\dfrac{2}{9}\) - 1 + 5 = \(\dfrac{2-9+45}{9}\) = \(\dfrac{38}{9}\)
+) A = 2x\(^2\) - 3x + 5
= 2\(\left(\dfrac{-1}{3}\right)^2\) - 3\(\left(\dfrac{-1}{3}\right)\) + 5
= 2.\(\dfrac{1}{9}\) - (-1) + 5 = \(\dfrac{2}{9}\) + 1 +5
= \(\dfrac{2+9+45}{9}\) = \(\dfrac{56}{9}\)
b) +) B = 2x\(^2\) - 3xy + y\(^2\)
= 2\(\left(\dfrac{1}{3}\right)^2\) - 3.\(\dfrac{1}{3}\).1 + 1\(^2\)
= 2.\(\dfrac{1}{9}\) - 1 + 1 = \(\dfrac{2}{9}\) - 1 + 1
= \(\dfrac{2-9+9}{9}\) = \(\dfrac{2}{9}\)
+) B = 2x\(^2\) - 3xy + y\(^2\)
= 2\(\left(\dfrac{-1}{3}\right)\)\(^2\) - 3\(\left(\dfrac{-1}{3}\right)\). 1 + 1\(^2\)
= 2.\(\dfrac{1}{9}\) - (-1) + 1 = \(\dfrac{2}{9}\) + 1 + 1
= \(\dfrac{2+9+9}{9}\) = \(\dfrac{20}{9}\)
bài 3
x.y.z = 2 và x + y + z = 0
A = ( x + y )( y +z )( z + x )
= x + y . y + z . z + x = ( x + y + z ) + ( x . y . z )
= 0 + 2 = 2
bài 4
a) | 2x - \(\dfrac{1}{3}\) | - \(\dfrac{1}{3}\) = 0 => | 2x - \(\dfrac{1}{3}\) | = \(\dfrac{1}{3}\)
=> 2x - \(\dfrac{1}{3}\) = \(\pm\) \(\dfrac{1}{3}\)
+) 2x - \(\dfrac{1}{3}\)= \(\dfrac{1}{3}\)
=> 2x = \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) = \(\dfrac{2}{3}\)
x = \(\dfrac{2}{3}\) : 2 = \(\dfrac{2}{3}\) . \(\dfrac{1}{2}\) = \(\dfrac{1}{3}\)
+) 2x - \(\dfrac{1}{3}\) = \(\dfrac{-1}{3}\)
2x = \(\dfrac{-1}{3}\) + \(\dfrac{1}{3}\) = 0
x = 0 : 2 = 2
\(A=\frac{3}{\left(x+2\right)^2+4};\left(x+2\right)^2\in N\)
\(\Rightarrow A_{max}\Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow\left(x+2\right)^2+4=4\)
\(\Rightarrow A_{max}=\frac{3}{4}\)
b, \(B=\left(x+1\right)^2+\left(y+3\right)^2+1\)
Mặt khác: \(\left(x+1\right)^2;\left(y+3\right)^2\in N\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2\ge0\)
\(\Rightarrow B_{min}\Leftrightarrow\left(x+1\right)^2+\left(y+3\right)^2=0\Rightarrow B_{min}=1\)
\(A=\frac{3}{\left(x+2\right)^2+4}\)
Để A max
=>(x+2)^2+4 min
Mà\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+4\ge4\)
Vậy Min = 4 <=>x=-2
Vậy Max A = 3/4 <=> x=-2
\(b,B=\left(x+1\right)^2+\left(y+3\right)^2+1\)
Có \(\left(x+1\right)^2\ge0;\left(y+3\right)^2\ge0\)
\(\Rightarrow B\ge0+0+1=1\)
Vậy MinB = 1<=>x=-1;y=-3
a, \(A-x^2+5\le5\)Dấu ''='' xảy ra khi x = 0
b, \(B=-2\left(x-1\right)^2+3\le3\)Dấu ''='' xảy ra khi x =1
c, \(C=-\left|3x-2\right|+5\le5\)Dấu ''='' xảy ra khi x = 2/3