Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=5-8x+x^2=-8x+x^2+6-11\)
\(=\left(x-4\right)^2-11\)
Vì \(\left(x-4\right)^2\ge0\forall x\)\(\Rightarrow\left(x-4\right)^2-11\ge-11\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-4\right)^2=0\Leftrightarrow x-4=0\Leftrightarrow x=4\)
Vậy Amin = - 11 <=> x = 4
\(B=\left(2-x\right)\left(x+4\right)=-x^2-2x+8\)
\(=-\left(x^2+2x+1\right)+9=-\left(x+1\right)^2+9\)
Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow-\left(x+1\right)^2+9\le9\)
Dấu "=" xảy ra \(\Leftrightarrow-\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy Bmax = 9 <=> x = - 1
Ta có: x^2>=0 với mọi x =>-x^2<=0 với mọi x =>-x^2-8*5<=-40
Dấu bằng xảy ra khi x^2=0 =>x=0
\(B=x^2+8x+16-16\)
\(B=\left(x+4\right)^2-16\)
có : \(\left(x+4\right)^2\ge0\Rightarrow\left(x+4\right)^2-16\ge-16\)
\(\Rightarrow B\ge-16\)
Dấu "=" xảy ra khi
(x + 4)2 = 0 => x + 4 = 0 => x = - 4
vậy Min B = -16 khi x = -4
\(B=x^2+8x\)
\(=x^2.2.x.4+16-16\)
\(=\left(x+4\right)^2-16\)
Vì \(\left(x+4\right)^2\ge0;\forall x\)
\(\Rightarrow\left(x+4\right)^2-16\ge0-16;\forall x\)
Hay\(B\ge-16;\forall x\)
Dấu "=" xảy ra\(\Leftrightarrow x+4=0\)
\(\Leftrightarrow x=-4\)
Vậy MIN B= -16 \(\Leftrightarrow x=-4\)
\(B=5-8x-x^2=-\left(x^2+8x+16\right)+21=-\left(x+4\right)^2+16\le16\forall x\)
Vậy GTLN của B = 16 khi x = -4.
\(5-8x-x^2\)
\(=-\left(x^2+8x-5\right)\)
\(=-\left(x^2+2.x.4+16-21\right)\)
\(=-\left(\left(x+4\right)^2-21\right)\)
\(=21-\left(x+4\right)^2\ge21\)
Min B = 21 khi \(x+4=0\)
\(=>x=-4\)
a) A= x2 + 4x + 5
=x2+4x+4+1
=(x+2)2+1≥0+1=1
Dấu = khi x+2=0 <=>x=-2
Vậy Amin=1 khi x=-2
b) B= ( x+3 ) ( x-11 ) + 2016
=x2-8x-33+2016
=x2-8x+16+1967
=(x-4)2+1967≥0+1967=1967
Dấu = khi x-4=0 <=>x=4
Vậy Bmin=1967 <=>x=4
Bài 2:
a) D= 5 - 8x - x2
=-(x2+8x-5)
=21-x2+8x+16
=21-x2+4x+4x+16
=21-x(x+4)+4(x+4)
=21-(x+4)(x+4)
=21-(x+4)2≤0+21=21
Dấu = khi x+4=0 <=>x=-4
Bài 1:
c)C=x2+5x+8
=x2+5x+\(\left(\dfrac{5}{2}\right)^2\)+\(\dfrac{7}{4}\)
=\(\left(x+\dfrac{5}{2}\right)^2\)+\(\dfrac{7}{4}\)\(\ge\dfrac{7}{4}\)
Vậy \(C_{min}=\dfrac{7}{4}\Leftrightarrow x=-\dfrac{5}{2}\)
\(N=-\left(x^2+8x-5\right)\)
\(N=\left(x^2+2.x.4+16-16-5\right)\)
\(N=-\left(\left(x+4\right)^2-21\right)\)
\(N=-\left(x+4\right)^2+21\)
Nhận xét: -(x+4)2<=0 với mọi số thực x, dấu bằng xảy ra <=> x=-4
=> -(x+4)2+21<=21 với mọi số thực x, dấu bằng xảy ra <=> x=-4
Vậy GTLN của N là 21 <=> x=-4
A = x2 + 4x + 7
= ( x2 + 4x + 4 ) + 3
= ( x + 2 )2 + 3
( x + 2 )2 ≥ 0 ∀ x => ( x + 2 )2 + 3 ≥ 3
Đẳng thức xảy ra <=> x + 2 = 0 => x = -2
=> MinA = 3 <=> x = -2
B = 2x2 - 6x
= 2( x2 - 3x + 9/4 ) - 9/2
= 2( x - 3/2 )2 - 9/2
2( x - 3/2 )2 ≥ 0 ∀ x => 2( x - 3/2 )2 -9/2 ≥ -9/2
Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2
=> MinB = -9/2 <=> x = 3/2
C = -2x2 + 8x - 15
= -2( x2 - 4x + 4 ) - 7
= -2( x - 2 )2 - 7
-2( x - 2 )2 ≤ 0 ∀ x => -2( x - 2 )2 - 7 ≤ -7
Đẳng thức xảy ra <=> x - 2 = 0 => x = 2
=> MaxC = -7 <=> x = 2
5 - 8x - x2 = - (x2 + 8x - 5) = -[( x2 + 8x - 16 ) + 21] = -[(x + 4)2 + 21] = 21 - (x + 4)2
Vì (x + 4)2 ≥ 0 \(\forall\)x
=> 21 - (x + 4)2 < 21 \(\forall\)x
Dấu " = " xảy ra <=> (x + 4)2 = 0
<=> x + 4 = 0
<=> x = -4
Vậy GTLN của 5 - 8x - x2 = 21 khi x = -4
Nhầm rồi :< Chỉ sai câu đầu thôi, còn lại thì đúng nhé :v
5 - 8x - x2 = -(x2 + 8x - 5) = -[(x2 + 8x + 16) - 21] = -[(x + 4)2 - 21] = 21 - (x + 4)2