K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 1 2024

1.

Để $(d)\parallel (d')$ thì: \(\left\{\begin{matrix} m=2\\ -7\neq 0\end{matrix}\right.\Leftrightarrow m=2\)

2.

Để $(d)\parallel (d')$ thì: \(\left\{\begin{matrix} m+2=1\\ 4\neq -3\end{matrix}\right.\Leftrightarrow m=-1\)

30 tháng 1 2024

Bài 1:

1; (d) // (d') ⇔ \(\left\{{}\begin{matrix}a=a'\\b\ne b'\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}m=2\\-7\ne0\end{matrix}\right.\)

Kết luận : (d) // (d') khi m = 2

2; (d)//(d') ⇔ \(\left\{{}\begin{matrix}a=a'\\b\ne b'\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}m+2=1\\4\ne-3\end{matrix}\right.\)

⇔  \(\left\{{}\begin{matrix}m=1-2\\4\ne-3\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}m=-1\\4\ne-3\end{matrix}\right.\)

Kết luận (d)//(d') khi m = -1

 

30 tháng 1 2024

Bài 2:

a; (d) cắt (d') ⇔ a ≠ a'

⇔ m ≠ 2m + 1 

    2m - m ≠ -1

            m ≠ -1 

   Vậy (d) cắt (d') khi m ≠ -1

b; (d)//(d') ⇔ \(\left\{{}\begin{matrix}m=2m+1\\3\ne-5\end{matrix}\right.\)

                ⇒ \(\left\{{}\begin{matrix}2m-m=-1\\3\ne-5\end{matrix}\right.\)

                ⇒   \(\left\{{}\begin{matrix}m=-1\\3\ne-5\end{matrix}\right.\)

Vậy (d)//(d') khi m = -1

19 tháng 8 2021

a, Với \(m\ne2\)

d đi qua A(0;5) <=> \(m=5\)(tm)

b, (d1) : y = 2x + 3 nhé, mình đặt tên luôn ><

d // d1 <=> \(\hept{\begin{cases}m-2=2\\m\ne3\end{cases}}\Leftrightarrow\hept{\begin{cases}m=4\\m\ne3\end{cases}}\Leftrightarrow m=4\)

Bài 1: (4,0 điểm). Cho biểu thức a) Rút gọn biểu thức P.b) Tìm x để .c) Tìm giá trị nguyên của x để P nhận giá trị là số nguyên.Bài 2: (4,5 điểm). a) Giải phương trình : .b) Phân tích đa thức sau thành nhân tử: (x + 2)(2x2 – 5x) - x3 - 8c) Cho x, y, z là các số khác 0 và đôi một khác nhau thỏa mãn: . Tính giá trị của biểu thức: .Bài 3: (4,0 điểm). a) Tìm tất cả các cặp số nguyên (x; y) thỏa...
Đọc tiếp

Bài 1: (4,0 điểm). Cho biểu thức
a) Rút gọn biểu thức P.
b) Tìm x để .
c) Tìm giá trị nguyên của x để P nhận giá trị là số nguyên.
Bài 2: (4,5 điểm). 
a) Giải phương trình : .
b) Phân tích đa thức sau thành nhân tử: (x + 2)(2x2 – 5x) - x3 - 8
c) Cho x, y, z là các số khác 0 và đôi một khác nhau thỏa mãn: . Tính giá trị của biểu thức: .
Bài 3: (4,0 điểm). 
a) Tìm tất cả các cặp số nguyên (x; y) thỏa mãn: y(x – 1) = x2 + 2
b) Chứng minh rằng nếu các số nguyên a, b, c thỏa mãn b2 – 4ac và b2 + 4ac đồng thời là các số chính phương thì abc 30. 
Bài 4: (6,0 điểm). 
1) Cho tam giác ABC vuông tại A. Lấy một điểm M bất kỳ trên cạnh AC. Từ C vẽ một đường thẳng vuông góc với tia BM, đường thẳng này cắt tia BM tại D, cắt tia BA tại E, EM cắt BC tại I.
a) Chứng minh EA.EB = ED.EC.
b) Chứng minh .
c) Chứng minh BM.BD + CM.CA = BC2.
d) Vẽ đường thẳng vuông góc với AB tại B, đường thẳng vuông góc với CD tại C, chúng cắt nhau tại K. Chứng minh MK luôn đi qua một điểm cố định khi M thay đổi.
e) Đặt BC = a; EC = b; BE = c; AD = a’; AI = b’; DI = c’.
Chứng minh .
2) Cho điểm D thay đổi trên cạnh BC của tam giác nhọn ABC (D khác B và C). Từ D kẻ đường thẳng song song với AB cắt cạnh AC tại điểm N. Cũng từ D kẻ đường thẳng song song với AC cắt cạnh AB tại điểm M. Tìm vị trí của D để đoạn thẳng MN có độ dài nhỏ nhất 
Bài 5: (1,5 điểm). Cho a, b, c > 0 thỏa mãn: a2 + b2 + c2 = 1. Chứng minh rằng 

(1)/(1-ab)+(1)/(1-bc)+(1)/(1-ca)<=9/2

 

3
8 tháng 4 2016

Bạn tự giải luôn đi!

8 tháng 4 2016

dài quá, ko muốn giải

9 tháng 9 2023

Hai đường thẳng song song với nhau khi:

\(m+1=-2\\ \Leftrightarrow m=-3\)

Chọn A

29 tháng 1 2024

a

nha i hihi

 

29 tháng 11 2018

chị đã ngủ chưa

29 tháng 11 2018

@NguyễnLamGiang

Bn nghĩ có thể vừa ngủ vừa đăng câu hỏi ư ???

~~~
~~~

4 tháng 12 2023

a, d1//d2 <=> 2m-1= m+1 <=> 2m-m = 1+1 <=> m=2

 

a: Để (d1)//(d2) thì \(\left\{{}\begin{matrix}2m-1=m+1\\-2m+5< >m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2m-m=1+1\\-2m-m< >-1-5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=2\\-3m\ne-6\end{matrix}\right.\)

=>\(m\in\varnothing\)

b: Để (d1) cắt (d2) thì \(2m-1\ne m+1\)

=>\(2m-m\ne1+1\)

=>\(m\ne2\)

15 tháng 12 2023

Sửa đề: (d'): y=-4x+3

a: Thay x=0 và y=0 vào y=(m+2)x+m, ta được:

\(0\left(m+2\right)+m=0\)

=>m=0

b:

Sửa đề: Để đường thẳng (d)//(d')

Để (d)//(d') thì \(\left\{{}\begin{matrix}m+2=-4\\m\ne3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=-6\\m\ne3\end{matrix}\right.\)

=>m=-6

c: Sửa đề: cắt đường thẳng d'

Để (d) cắt (d') thì \(m+2\ne-4\)

=>\(m\ne-6\)

d: Để (d) trùng với (d') thì

\(\left\{{}\begin{matrix}m+2=-4\\m=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-6\\m=3\end{matrix}\right.\)

=>\(m\in\varnothing\)

a: Phương trình hoành độ giao điểm là:

x-7=-2x-1

=>x+2x=-1+7

=>3x=6

=>x=2

Thay x=2 vào y=x-7, ta được:

y=2-7=-5

=>A(2;-5)

b: Thay x=2 và y=-5 vào y=mx+1, ta được:

\(m\cdot2+1=-5\)

=>2m=-6

=>m=-3

26 tháng 1 2024

a: Phương trình hoành độ giao điểm là:

x-7=-2x-1

=>x+2x=-1+7

=>3x=6

=>x=2

Thay x=2 vào y=x-7, ta được:

y=2-7=-5

=>A(2;-5)

b: Thay x=2 và y=-5 vào y=mx+1, ta được:

m⋅2+1=−5

=>2m=-6

=>m=-3

a: Để (d)//(d1) thì \(\left\{{}\begin{matrix}m+1=-\dfrac{1}{2}\\-5< >3\left(đúng\right)\end{matrix}\right.\)

=>\(m+1=-\dfrac{1}{2}\)

=>\(m=-\dfrac{3}{2}\)

b: Thay x=2 vào y=x+3, ta được:

\(y=2+3=5\)

Thay x=2 và y=5 vào (d), ta được:

\(2\left(m+1\right)-5=5\)

=>2(m+1)=10

=>m+1=5

=>m=5-1=4

c: Tọa độ A là:

\(\left\{{}\begin{matrix}x=0\\y=\left(m+1\right)x-5=0\cdot\left(m+1\right)-5=-5\end{matrix}\right.\)

=>A(0;-5)

\(OA=\sqrt{\left(0-0\right)^2+\left(-5-0\right)^2}=\sqrt{0^2+5^2}=5\)

Tọa độ B là:

\(\left\{{}\begin{matrix}\left(m+1\right)x-5=0\\y=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(m+1\right)x=5\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{m+1}\\y=0\end{matrix}\right.\)

=>\(B\left(\dfrac{5}{m+1};0\right)\)

\(OB=\sqrt{\left(\dfrac{5}{m+1}-0\right)^2+\left(0-0\right)^2}\)

\(=\sqrt{\left(\dfrac{5}{m+1}\right)^2}=\dfrac{5}{\left|m+1\right|}\)

Ox\(\perp\)Oy

=>OA\(\perp\)OB

=>ΔOAB vuông tại O

ΔOAB vuông tại O

=>\(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot OB=\dfrac{1}{2}\cdot5\cdot\dfrac{5}{\left|m+1\right|}=\dfrac{25}{2\left|m+1\right|}\)

Để \(S_{AOB}=5\) thì \(\dfrac{25}{2\left|m+1\right|}=5\)

=>\(2\left|m+1\right|=5\)

=>|m+1|=5/2

=>\(\left[{}\begin{matrix}m+1=\dfrac{5}{2}\\m+1=-\dfrac{5}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{3}{2}\\m=-\dfrac{7}{2}\end{matrix}\right.\)