K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 7 2021

\(\Leftrightarrow a^2-2a+1+b^2+6b+9=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b+3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-1=0\\b+3=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-3\end{matrix}\right.\)

19 tháng 8 2020

a2 - 2a + 6b + b2 = -10

<=> a2 - 2a + 6b + b2 + 10 = 0

<=> ( a2 - 2a + 1 ) + ( b2 + 6b + 9 ) = 0

<=> ( a - 1 )2 + ( b + 3 )2 = 0 (*)

\(\hept{\begin{cases}\left(a-1\right)^2\ge0\forall a\\\left(b+3\right)^2\ge0\forall b\end{cases}}\Rightarrow\left(a-1\right)^2+\left(b+3\right)^2\ge0\forall a,b\)

Đẳng thức xảy ra ( tức (*) ) <=> \(\hept{\begin{cases}a-1=0\\b+3=0\end{cases}}\Rightarrow\hept{\begin{cases}a=1\\b=-3\end{cases}}\)

Vậy a = 1 ; b = -3

26 tháng 7 2021

 a2-2a+6b+b2=-10

⇒  a2-2a+6b+b2+10=0

⇒ (a2-2a+1)+(b2+6b+9)=0

⇒ (a-1)2+(b+3)2=0

vì  (a-1)2≥ 0; (b+3)2 ≥ 0 mà (a-1)2+(b+3)2=0

⇒ a-1=0 và b-3=0

⇒ a=1,b=3  

8 tháng 4 2016

\(a.\)

Phân tích biển đổi thành nhân tử kết hợp với chuyển vế để quy về hẳng đẳng thức, khi đó, ta tính được  \(a,b\)

Thật vậy, ta có:

\(a^2-2a+6b+b^2=-10\)

\(\Leftrightarrow\)  \(a^2-2a+6b+b^2+10=0\)

\(\Leftrightarrow\)  \(\left(a^2-2a+1\right)+\left(b^2+6b+9\right)=0\)

\(\Leftrightarrow\)  \(\left(a-1\right)^2+\left(b+3\right)^2=0\)   \(\left(1\right)\)

Vì  \(\left(a-1\right)^2\ge0;\)  \(\left(b+3\right)^2\ge0\)  với mọi  \(a,b\)

nên để thỏa mãn đẳng thức \(\left(1\right)\)  thì phải xảy ra đồng thời  \(\left(a-1\right)^2=0\)  và  \(\left(b+3\right)^2=0\)

\(\Leftrightarrow\)  \(a-1=0\)  và  \(b+3=0\)  \(\Leftrightarrow\)  \(a=1\)  và  \(b=-3\)

\(b.\)  Cộng  \(1\) vào mỗi phân thức của biểu thức  \(A\), khi đó, ta có:

\(A+3=\left(\frac{x+y}{z}+1\right)+\left(\frac{x+z}{y}+1\right)+\left(\frac{y+z}{x}+1\right)=\frac{x+y+z}{z}+\frac{x+y+z}{y}+\frac{x+y+z}{x}\)

\(A+3=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=0\)  (do  \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\))

Vậy,  \(A=-3\)

9 tháng 4 2016

Viết rõ hơn được không bạn

16 tháng 12 2018

a) \(a^2+b^2+1\ge ab+a+b\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra <=> a=b=1.

b) \(a^2-2a+6b+b^2=-10\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2+6b+9\right)=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b+3\right)^2=0\). Mà \(\left(a-1\right)^2\ge0;\left(b+3\right)^2\ge0\forall a;b\)

Nên \(\hept{\begin{cases}\left(a-1\right)^2=0\\\left(b+3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=-3\end{cases}}}\). KL: ...

14 tháng 6 2016

\(a^2-6a+6b+b^2=-10\)

\(\Leftrightarrow a^2-2a+6b+b^2+10=0\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2+6b+9\right)=0\)

\(\Leftrightarrow\left(a^2-2.a.1+1^2\right)+\left(b^2+2.b.3+3^2\right)=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b+3\right)^2=0\)  (1)

\(\left(a-1\right)^2+\left(b+3\right)^2\ge0\) với mọi a;b

Nên để thỏa mãn (1) thì \(\left(a-1\right)^2=\left(b+3\right)^2=0\Leftrightarrow a=1;b=-3\)

16 tháng 2 2020

a2 - 2a + 6b + b2 = - 10

=> ( a2 - 2a + 1 ) + ( b2 + 6b + 9 ) = 0

=> ( a - 1 )2 + ( b + 3 )2 = 0

Mà ( a - 1 )2 \(\ge\) 0; ( b + 3 )2 \(\ge\)0

Dấu "=" xảy ra khi :

\(\left\{{}\begin{matrix}a-1=0\\b+3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=1\\b=-3\end{matrix}\right.\)

18 tháng 9 2018

a) Ta có: \(a^2-2a+2\)

\(=\left(a^2-2a+1\right)+1\)

\(=\left(a-1\right)^2+1>0\) với mọi a

\(=>\left(đpcm\right)\)

18 tháng 9 2018

b)Ta có: \(6b-b^2-10\)

\(=-\left(b^2-6b+3^2\right)-1\)

\(=-\left(b-3\right)^2-1< 0\) với mọi b

=>(đpcm).

27 tháng 7 2020

Viết rõ đề bài ra đc không ạ

27 tháng 7 2020

đấy là phân số