Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A : 7 = x ( dư 3 )
A : 9 = y ( dư 3 )
y + 2 = x
vậy ta có thể nói
y . 9 + 3 = ( y + 2 ) . 7 + 3
y . 9 + 3 = y . 7 + 14 + 3
y . 9 + 3 = y . 7 + 17
y . 9 - y . 7 = 17 - 3
2y = 14
y = 7
a = 7 x 9 + 3 = 66
Hok tốt
22222 đồng dư với -4 (mod 7)
=> 2222255555 đồng dư với -455555 (mod 7)
55555 đồng dư với 4 (mod 7)
=> 5555522222 đồng dư với 422222(mod 7)
Vậy 2222255555+5555522222 đồng dư với -455555+455555 (mod 7)
đồng dư với 455555 (1-433333) (mod 7)
đồng dư với 455555 (1-(43)11111) (mod 7)
Có: 43=64 đồng dư với 1 (mod 7) => (43)11111 đồng dư với 1 (mod 7)
=> 2222255555+5555522222 đồng dư với -455555(+1-1)=0 (mod 7)
Vậy 2222255555+5555522222 chia hết cho 7.
Bạn sử dụng đồng dư thức
48 chia 7 dư 6
< = > 48^13 đồng dư với 6^13 (mod 7)
Bạn tìm số dư của 6^13 cho 7 là được
Ta có : 48 & (-1) (mod 7) => 48^12 & (-1)^12 (mod 7) & 1 (mod 7)
=> 48^13 & 1.48 (mod 7) &48 (mod 7) & 6 (mod 7)
Vậy 48^13 chia 7 dư 6
đây là toán lớp 6 mà ! Dấu & là đồng dư nha , tick nha bn !
Cho \(\frac{x}{z+t+y}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
\(\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}\)=P .
Chứng minh P nguyên