K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2019

A=1+21+22+23+24+....+21013+22014

A=(1+21)+(22+23)+....+(22013+22014)

A=1.1+1.2+1.22+2.22+....+1.22013+2.22013

A=1.(1+2)+22.(1+2)+...+22013.(1+2)

A=1.3+22.3+....+22013.3

A=3.(1+22+....+22013)

\(\Rightarrow\)A\(⋮\)3

28 tháng 10 2016

Ta có:

\(A=1+2^2+2^3+...+2^{2011}+2^{2012}+2^{2013}\)

\(A=1+\left(2^2+2^3+2^4\right)+\left(2^5+2^6+2^7\right)+...+\left(2^{2011}+2^{2012}+2^{2013}\right)\)

\(A=1+2^2\cdot\left(1+2+2^2\right)+2^5\cdot\left(1+2+2^2\right)+...+2^{2011}\cdot\left(1+2+2^2\right)\)

\(A=1+2^2\cdot7+2^5\cdot7+...+2^{2011}\cdot7\)

\(A=1+7\cdot\left(2^2+2^5+...+2^{2011}\right)\)

\(7⋮7\)

\(\Rightarrow7\cdot\left(2^2+2^5+...+2^{2011}\right)⋮7\)

\(\Rightarrow1+7\cdot\left(2^2+2^5+...+2^{2011}\right)\) chia 7 dư 1

hay \(A\) chia 7 dư 1

Vậy A chia 7 dư 1.

29 tháng 10 2016

thanks

Đặt  \(A=1+2+2^2+2^3+......+2^{2015}\)

\(\Rightarrow2A=2+2^2+2^3+2^4+......+2^{2016}\)

\(\Leftrightarrow2A-A=1-2^{2016}\)( sử dụng triệt tiêu các số giống nhau còn lại \(1\)và \(2^{2016}\))

Ta thực hiên phép chia :

\(A=\frac{2^{2018}}{2^{2016}-1}\)

\(\Rightarrow A+1=\frac{2^{2018}}{2^{2016}}\)

Vậy số dư phép chia \(2^{2018}\)cho \(1+2+2^2+2^3+.....+2^{2015}\)là 1

13 tháng 3 2017

bạn ơi dư 1 nha

15 tháng 3 2017

các bạn giải chi tiết giùm nhé

15 tháng 3 2017

số dư la 1 đó bạn