Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình nope biết làm dư thôi chứ tròn làm đc
Ta có:
\(A=1+2^2+2^3+...+2^{2011}+2^{2012}+2^{2013}\)
\(A=1+\left(2^2+2^3+2^4\right)+\left(2^5+2^6+2^7\right)+...+\left(2^{2011}+2^{2012}+2^{2013}\right)\)
\(A=1+2^2\cdot\left(1+2+2^2\right)+2^5\cdot\left(1+2+2^2\right)+...+2^{2011}\cdot\left(1+2+2^2\right)\)
\(A=1+2^2\cdot7+2^5\cdot7+...+2^{2011}\cdot7\)
\(A=1+7\cdot\left(2^2+2^5+...+2^{2011}\right)\)
Vì \(7⋮7\)
\(\Rightarrow7\cdot\left(2^2+2^5+...+2^{2011}\right)⋮7\)
\(\Rightarrow1+7\cdot\left(2^2+2^5+...+2^{2011}\right)\) chia 7 dư 1
hay \(A\) chia 7 dư 1
Vậy A chia 7 dư 1.
Đặt \(A=1+2+2^2+2^3+......+2^{2015}\)
\(\Rightarrow2A=2+2^2+2^3+2^4+......+2^{2016}\)
\(\Leftrightarrow2A-A=1-2^{2016}\)( sử dụng triệt tiêu các số giống nhau còn lại \(1\)và \(2^{2016}\))
Ta thực hiên phép chia :
\(A=\frac{2^{2018}}{2^{2016}-1}\)
\(\Rightarrow A+1=\frac{2^{2018}}{2^{2016}}\)
Vậy số dư phép chia \(2^{2018}\)cho \(1+2+2^2+2^3+.....+2^{2015}\)là 1
A =1 + (2+22 +23)+(24+25+26) +........+ (22014+22015+22016)
= 1 +2(1+2+4) +24(1+2+4) +.......+22014(1+2+4)
=1 + 7(2+24 +......+22014)
=> A chia cho 7 dư 1
\(A=1+\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2014}+2^{2015}+2^{2016}\right)\)
\(A=1+7\cdot2+7\cdot2^4+...+7\cdot2^{2014}\)
\(A=1+7\cdot\left(2+2^4+...+2^{2014}\right)\) chia 7 dư 1
bạn ơi dư 1 nha