Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{1-x}+\sqrt{x-1}\)
Để căn thức XĐ thì \(\hept{\begin{cases}1-x\ge0\\x-1\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\le1\\x\ge1\end{cases}}}\)
a) ĐKXĐ: \(x^2+6x+11\ge0\)đúng\(\forall x\inℝ\)
b) ĐKXĐ: \(\hept{\begin{cases}\left(2x-3\right)\left(x+2\right)\ge0\\x+3\ne0\end{cases}\Leftrightarrow\orbr{\begin{cases}x\le-2,x\ne-3\\x\ge\frac{3}{2}\end{cases}}}\)
c) ĐKXĐ: \(-x^2-5\ge0\)Vô nghiệm\(\forall x\inℝ\)
Bài 1:
a) Để căn thức \(\sqrt{-x^2+2x-1}\) có nghĩa thì \(-x^2+2x-1\ge0\)
\(\Leftrightarrow-\left(x-1\right)^2\ge0\)
\(\Leftrightarrow\left(x-1\right)^2\le0\)
\(\Leftrightarrow x-1\le0\)
hay \(x\le1\)
b) Để căn thức \(\sqrt{\left|x-1\right|-3}\) có nghĩa thì \(\left|x-1\right|-3\ge0\)
\(\Leftrightarrow\left|x-1\right|\ge3\)
\(\Leftrightarrow x-1\ge3\)
\(\Leftrightarrow x\ge4\)
Ủa câu này bạn cho bên trong căn lớn hơn 0 thôi, có phân số thì thêm đk mẫu khác 0 thôi ^^
Căn thức đã cho xác định khi:
2-x>=0 và x>=0
<=>x<=2 và x>=0
<=>0<=x<=2
Vậy với 0<=x<=2 thì căn thức đã cho xác định.