\(\sqrt{-x^2+2x-1}\)

b,

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:

a) Để căn thức \(\sqrt{-x^2+2x-1}\) có nghĩa thì \(-x^2+2x-1\ge0\)

\(\Leftrightarrow-\left(x-1\right)^2\ge0\)

\(\Leftrightarrow\left(x-1\right)^2\le0\)

\(\Leftrightarrow x-1\le0\)

hay \(x\le1\)

b) Để căn thức \(\sqrt{\left|x-1\right|-3}\) có nghĩa thì \(\left|x-1\right|-3\ge0\)

\(\Leftrightarrow\left|x-1\right|\ge3\)

\(\Leftrightarrow x-1\ge3\)

\(\Leftrightarrow x\ge4\)

22 tháng 7 2020

Còn câu c ạ?

7 tháng 10 2017

trả lời giúp mk đi mà chiều nộp bài rùi huhu

27 tháng 7 2018

\(\sqrt{2x+3}\) có nghĩa khi 

\(2x+3\ge0\)

\(\Leftrightarrow2x\ge-3\)

\(\Leftrightarrow x\ge-\frac{3}{2}\)

Vậy .....

27 tháng 7 2018

1) \(\sqrt{-3x+1}\) có nghĩa \(\Leftrightarrow\sqrt{-3x+1}\ge0\)

\(\Leftrightarrow-3x+1\ge0\Leftrightarrow-3x\ge-1\Leftrightarrow x\le\frac{1}{3}\)

2) \(\sqrt{2x+3}\) có nghĩa \(\Leftrightarrow\sqrt{2x+3}\ge0\Leftrightarrow2x+3\ge0\Leftrightarrow2x\ge-3\Leftrightarrow x\ge\frac{-3}{2}\)

3) \(\sqrt{\frac{-1}{2x+1}}\) có nghĩa \(\Leftrightarrow\sqrt{\frac{-1}{2x+1}}\ge0\Leftrightarrow\frac{-1}{2x+1}\ge0\Leftrightarrow2x+1< 0\Leftrightarrow2x< -1\Leftrightarrow x< \frac{-1}{2}\)

29 tháng 6 2017

Điều kiện có nghĩa

a/ \(\hept{\begin{cases}x+2\ge0\\x-5\ne0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge-2\\x\ne5\end{cases}}\)

b/ \(\hept{\begin{cases}2x-1\ge0\\x+3\ne0\end{cases}}\)

\(\hept{\begin{cases}x\ge\frac{1}{2}\\x\ne-3\end{cases}}\)

c/ \(\left(x-3\right)\left(x+2\right)\ge0\)

\(\Leftrightarrow\orbr{\begin{cases}x\le-2\\x\ge3\end{cases}}\)

d/ \(\hept{\begin{cases}2x-1\ge0\\-x\ge0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x\le0\end{cases}}\)

Không tồn tại x để nó có nghĩa.

e/ \(\hept{\begin{cases}-3x\ge0\\x+2>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\le0\\x>-2\end{cases}}\)

29 tháng 6 2017

xin lỗi mk mới hc lp 7 thôi!

Bài 1:

a) Để căn thức \(\sqrt{\frac{2}{9-x}}\) có nghĩa thì \(\left\{{}\begin{matrix}\frac{2}{9-x}\ge0\\9-x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9-x>0\\x\ne9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 9\\x\ne9\end{matrix}\right.\Leftrightarrow x< 9\)

b) Ta có: \(x^2+2x+1\)

\(=\left(x+1\right)^2\)

\(\left(x+1\right)^2\ge0\forall x\)

nên \(x^2+2x+1\ge0\forall x\)

Do đó: Căn thức \(\sqrt{x^2+2x+1}\) xác được với mọi x

c) Để căn thức \(\sqrt{x^2-4x}\) có nghĩa thì \(x^2-4x\ge0\)

\(\Leftrightarrow x\left(x-4\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x-4\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x-4< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x\ge4\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x< 4\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge4\\x< 0\end{matrix}\right.\)

Bài 3:

a) Ta có: \(\sqrt{\left(3-\sqrt{10}\right)^2}\)

\(=\left|3-\sqrt{10}\right|\)

\(=\sqrt{10}-3\)(Vì \(3< \sqrt{10}\))

b) Ta có: \(\sqrt{9-4\sqrt{5}}\)

\(=\sqrt{5-2\cdot\sqrt{5}\cdot2+4}\)

\(=\sqrt{\left(\sqrt{5}-2\right)^2}\)

\(=\left|\sqrt{5}-2\right|\)

\(=\sqrt{5}-2\)(Vì \(\sqrt{5}>2\))

c) Ta có: \(3x-\sqrt{x^2-2x+1}\)

\(=3x-\sqrt{\left(x-1\right)^2}\)

\(=3x-\left|x-1\right|\)

\(=\left[{}\begin{matrix}3x-\left(x-1\right)\left(x\ge1\right)\\3x-\left(1-x\right)\left(x< 1\right)\end{matrix}\right.\)

\(=\left[{}\begin{matrix}3x-x+1\\3x-1+x\end{matrix}\right.=\left[{}\begin{matrix}2x+1\\4x-1\end{matrix}\right.\)

9 tháng 6 2019

1)a) điều kiện:

\(\hept{\begin{cases}x-2\ge0\\x+3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2\\x\ne-3\end{cases}}\Leftrightarrow x\ge2\)

b)ĐK:\(x^2+4x+3\ge0\)

\(\Leftrightarrow\orbr{\begin{cases}x\le-3\\x\ge-1\end{cases}}\)

c)ĐK:\(9-x^2\ge0\)

\(\Leftrightarrow x^2\le9\)

\(\Leftrightarrow-3\le x\le3\)

2) A=\(3x-\frac{\sqrt{\left(x-2\right)^2}}{x-2}\)

A=\(3x-\frac{x-2}{x-2}\)

A=3x-1

10 tháng 6 2019

cảm ơn

12 tháng 7 2018

Các bn lm chi tiết giúp mk nha.......

12 tháng 7 2018

Bài 1:

a) \(\sqrt{1-x^2}\)có nghĩa   \(\Leftrightarrow\)\(1-x^2\ge0\)

                                              \(\Leftrightarrow\)\(x^2\le1\)

                                              \(\Leftrightarrow\)\(\left|x\right|\le1\)

b)  \(\sqrt{\frac{x-2}{x-3}}\)có nghĩa   \(\Leftrightarrow\)\(\frac{x-2}{x-3}\ge0\)

                                              \(\Leftrightarrow\)\(\orbr{\begin{cases}x>3\\x\le2\end{cases}}\)